Fast and simple model for atmospheric radiative transfer

Abstract. Radiative transfer models (RTMs) are of utmost importance for quantitative remote sensing, especially for compensating atmospheric perturbation. A persistent trade-off exists between approaches that prefer accuracy at the cost of computational complexity, versus those favouring simplicity at the cost of reduced accuracy. We propose an approach in the latter category, using analytical equations, parameterizations and a correction factor to efficiently estimate the effect of molecular multiple scattering. We discuss the approximations together with an analysis of the resulting performance and accuracy. The proposed Simple Model for Atmospheric Radiative Transfer (SMART) decreases the calculation time by a factor of more than 25 in comparison to the benchmark RTM 6S on the same infrastructure. The relative difference between SMART and 6S is about 5% for spaceborne and about 10% for airborne computations of the atmospheric reflectance function. The combination of a large solar zenith angle (SZA) with high aerosol optical depth (AOD) at low wavelengths lead to relative differences of up to 15%. SMART can be used to simulate the hemispherical conical reflectance factor (HCRF) for spaceborne and airborne sensors, as well as for the retrieval of columnar AOD.

[1]  Vladimir V. Rozanov,et al.  A parameterization of the diffuse transmittance and reflectance for aerosol remote sensing problems , 2005 .

[2]  A. Kokhanovsky,et al.  SCIATRAN 2.0 – A new radiative transfer model for geophysical applications in the 175–2400 nm spectral region , 2004 .

[3]  Teruyuki Nakajima,et al.  Modelling radiation quantities and photolysis frequencies in the troposphere , 1994 .

[4]  Faculteit der Wiskunde en Natuurwetenschappen,et al.  Scattering in a Planetary Atmosphere. , 1948 .

[5]  K. Stamnes,et al.  Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. , 1988, Applied optics.

[6]  D. C. Robertson,et al.  MODTRAN: A Moderate Resolution Model for LOWTRAN , 1987 .

[7]  J. Hansen,et al.  Intensity and Polarization for Single Scattering by Polydisperse Spheres: A Comparison of Ray Optics and Mie Theory , 1971 .

[8]  P. Koepke,et al.  Optical Properties of Aerosols and Clouds: The Software Package OPAC , 1998 .

[9]  J. Key,et al.  Tools for Atmospheric Radiative Transfer: Streamer and FluxNet. Revised , 1998 .

[10]  Eleonora P. Zege,et al.  Speeding up the AOT retrieval procedure using RTT analytical solutions: FAR code , 2010 .

[11]  A. Goetz,et al.  Atmospheric correction algorithms for hyperspectral remote sensing data of land and ocean , 2009 .

[12]  Jens Nieke,et al.  Sensor Performance Requirements for the Retrieval of Atmospheric Aerosols by Airborne Optical Remote Sensing , 2008, Sensors.

[13]  A. Kokhanovsky,et al.  Satellite Aerosol Remote Sensing Over Land , 2009 .

[14]  A. Hammad The Primary and Secondary Scattering of Sunlight in a Plane-Stratified Atmosphere of Uniform Composition. , 1948 .

[15]  Eric P. Shettle,et al.  Atmospheric Aerosols: Global Climatology and Radiative Characteristics , 1991 .

[16]  Alexei Lyapustin,et al.  SPHERICAL HARMONICS METHOD IN THE PROBLEM OF RADIATIVE TRANSFER IN THE ATMOSPHERE-SURFACE SYSTEM , 1999 .

[17]  Christian Mätzler,et al.  Aerosol and cloud effects on solar brightening and the recent rapid warming , 2008 .

[18]  A. Lyapustin,et al.  Radiative transfer code SHARM for atmospheric and terrestrial applications. , 2005, Applied optics.

[19]  G. Rybicki Radiative transfer , 2019, Climate Change and Terrestrial Ecosystem Modeling.

[20]  J. Slusser,et al.  On Rayleigh Optical Depth Calculations , 1999 .

[21]  Peter R. J. North,et al.  The inter-comparison of major satellite aerosol retrieval algorithms using simulated intensity and polarization characteristics of reflected light , 2009 .

[22]  J. Hansen,et al.  Light scattering in planetary atmospheres , 1974 .

[23]  O. Hautecoeur,et al.  Daily estimates of aerosol optical thickness over land surface based on a directional and temporal analysis of SEVIRI MSG visible observations , 2010 .

[24]  Catherine Gautier,et al.  SBDART: A Research and Teaching Software Tool for Plane-Parallel Radiative Transfer in the Earth's Atmosphere. , 1998 .

[25]  Didier Tanré,et al.  Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: an overview , 1997, IEEE Trans. Geosci. Remote. Sens..

[26]  E. Vermote,et al.  Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: path radiance. , 2006, Applied optics.

[27]  Teruyuki Nakajima,et al.  Matrix formulations for the transfer of solar radiation in a plane-parallel scattering atmosphere. , 1986 .

[28]  Alexei Lyapustin,et al.  Radiative transfer codes for atmospheric correction and aerosol retrieval: intercomparison study. , 2008, Applied optics.

[29]  Andrew A. Lacis,et al.  Scattering, Absorption, and Emission of Light by Small Particles , 2002 .

[30]  A. Ångström The Albedo of Various Surfaces of Ground , 1925 .

[31]  Alexander A. Kokhanovsky,et al.  Aerosol Optics: Light Absorption and Scattering by Particles in the Atmosphere , 2008 .

[32]  Tatsuya Yokota,et al.  Matrix formulations of radiative transfer including the polarization effect in a coupled atmosphere–ocean system , 2010 .

[33]  Andrew A. Lacis,et al.  Errors induced by the neglect of polarization in radiance calculations for rayleigh-scattering atmospheres , 1994 .

[34]  A. Berk MODTRAN : A moderate resolution model for LOWTRAN7 , 1989 .

[35]  L. I. Chaikovskaya,et al.  New approach to the polarized radiative transfer problem , 1996 .

[36]  A. Hammad VII. The primary and secondary scattering of sunlight in a plane-stratified atmosphere of uniform composition , 1939 .

[37]  L. C. Henyey,et al.  Diffuse radiation in the Galaxy , 1940 .

[38]  Anders Ångström,et al.  On the Atmospheric Transmission of Sun Radiation and on Dust in the Air , 1929 .

[39]  V. Sobolev Chapter 11 – SPHERICAL ATMOSPHERES , 1975 .

[40]  Jens Nieke,et al.  APEX - the Hyperspectral ESA Airborne Prism Experiment , 2008, Sensors.

[41]  P. Barber OPTICAL PROPERTIES OF AEROSOLS , 1982 .

[42]  Graeme L. Stephens,et al.  A new polarized atmospheric radiative transfer model , 1991 .

[43]  T. Painter,et al.  Reflectance quantities in optical remote sensing - definitions and case studies , 2006 .