An optimal multigrid algorithm for discrete-time stochastic control
暂无分享,去创建一个
John N. Tsitsiklis | Decision Systems. | Chee-Seng. Chow | J. Tsitsiklis | Chee-Seng Chow | Decision Systems.
[1] D. Blackwell. Discounted Dynamic Programming , 1965 .
[2] E. Denardo. CONTRACTION MAPPINGS IN THE THEORY UNDERLYING DYNAMIC PROGRAMMING , 1967 .
[3] R. Ash. Measure, integration, and functional analysis , 1971 .
[4] D. Bertsekas. Convergence of discretization procedures in dynamic programming , 1975 .
[5] P. Schweitzer,et al. Contraction mappings underlying undiscounted markov decision problems : (preprint) , 1977 .
[6] Ward Whitt,et al. Approximations of Dynamic Programs, I , 1978, Math. Oper. Res..
[7] John Darzentas,et al. Problem Complexity and Method Efficiency in Optimization , 1983 .
[8] A. Werschulz. What is the Complexity of the Fredholm Problem of the Second Kind , 1984 .
[9] Wolfgang Hackbusch,et al. Multi-grid methods and applications , 1985, Springer series in computational mathematics.
[10] D. Bertsekas,et al. Adaptive aggregation methods for discounted dynamic programming , 1986, 1986 25th IEEE Conference on Decision and Control.
[11] N. McKay,et al. A dynamic programming approach to trajectory planning of robotic manipulators , 1986 .
[12] R. Hoppe. Multi-grid methods for Hamilton-Jacobi-Bellman equations , 1986 .
[13] J. Tsitsiklis,et al. Intractable problems in control theory , 1986 .
[14] Dimitri P. Bertsekas,et al. Dynamic Programming: Deterministic and Stochastic Models , 1987 .
[15] John N. Tsitsiklis,et al. The Complexity of Markov Decision Processes , 1987, Math. Oper. Res..
[16] M. Akian. Re´solution nume´rique d'equations d'Hamilton-Jacobi-Bellman-au moyen d'algorithmes multigrilles et d'ite´rations sur les politiques , 1988 .
[17] John N. Tsitsiklis,et al. The information-based complexity of dynamic programming , 1989 .
[18] Chows Chee-Seng. Multigrid algorithms and complexity results for discrete-time stochastic control and related fixed-point problems , 1989 .