Approximate Well-Supported Nash Equilibria Below Two-Thirds
暂无分享,去创建一个
[1] Kousha Etessami,et al. Recursive Markov chains, stochastic grammars, and monotone systems of nonlinear equations , 2005, JACM.
[2] Xiaotie Deng,et al. Settling the complexity of computing two-player Nash equilibria , 2007, JACM.
[3] Aranyak Mehta,et al. A note on approximate Nash equilibria , 2006, Theor. Comput. Sci..
[4] B. Jansen,et al. Sensitivity analysis in linear programming: just be careful! , 1997 .
[5] Adrian Vetta,et al. Nash equilibria in random games , 2007 .
[6] Aranyak Mehta,et al. Progress in approximate nash equilibria , 2007, EC '07.
[7] Paul G. Spirakis,et al. Well Supported Approximate Equilibria in Bimatrix Games , 2010, Algorithmica.
[8] J. Nash. NON-COOPERATIVE GAMES , 1951, Classics in Game Theory.
[9] Thomas L. Magnanti,et al. Applied Mathematical Programming , 1977 .
[10] Paul G. Spirakis,et al. Efficient Algorithms for Constant Well Supported Approximate Equilibria in Bimatrix Games , 2007, ICALP.
[11] Rahul Savani,et al. Polylogarithmic Supports Are Required for Approximate Well-Supported Nash Equilibria below 2/3 , 2013, WINE.
[12] Paul G. Spirakis,et al. An Optimization Approach for Approximate Nash Equilibria , 2007, WINE.
[13] Evangelos Markakis,et al. New algorithms for approximate Nash equilibria in bimatrix games , 2010, Theor. Comput. Sci..
[14] Paul W. Goldberg,et al. The Complexity of Computing a Nash Equilibrium , 2009, SIAM J. Comput..