Numerical solutions of first kind Linear Fredholm Integral Equations using quarter-sweep successive over-relaxation (QSSOR) Iterative Method

In this paper, an experimental study is conducted to show the efficiency of the Quarter-Sweep Successive Over-Relaxation (QSSOR) iterative method by using the quadrature approximation equations to obtain numerical solutions of the first kind linear Fredholm integral equations. Furthermore, the derivation and implementation of the QSSOR method in solving first kind linear Fredholm integral equations are also presented. Numerical examples and comparisons with other existing methods are given to illustrate the effectiveness of the proposed method.

[1]  W. Robert Boland,et al.  The numerical solution of Fredholm integral equations using product type quadrature formulas , 1972 .

[2]  Abdul Rahman Abdullah The four point explicit decoupled group (EDG) Method: a fast poisson solver , 1991, Int. J. Comput. Math..

[3]  Abdul Rahman Abdullah,et al.  A Comparative Study of Parallel Strategies for the Solution of Elliptic Pde's , 1996, Parallel Algorithms Appl..

[4]  A. Polyanin Handbook of Integral Equations , 1998 .

[5]  Jumat Sulaiman,et al.  A Parallel Halfsweep Multigrid Algorithm on the Shared Memory Multiprocessors , 2000 .

[6]  M. Othman,et al.  An efficient four points modified explicit group poisson solver , 2000, Int. J. Comput. Math..

[7]  Mohamed Othman,et al.  Implementation of the Parallel Four Points Modified Explicit Group Iterative Algorithm on Shared Memory Parallel Computer , 2001, PaCT.

[8]  M. T. Rashed An expansion method to treat integral equations , 2003, Appl. Math. Comput..

[9]  Mohamed Othman,et al.  The Half-Sweep Iterative Alternating Decomposition Explicit (HSIADE) Method for Diffusion Equation , 2004, CIS.

[10]  Mohamed Othman,et al.  Quarter-sweep iterative alternating decomposition explicit algorithm applied to diffusion equations , 2004, Int. J. Comput. Math..

[11]  George C. Hsiao,et al.  A Galerkin collocation method for some integral equations of the first kind , 1980, Computing.

[12]  Henri Luchian,et al.  A GEP-based approach for solving Fredholm first kind integral equations , 2005, Seventh International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC'05).

[13]  Khosrow Maleknejad,et al.  Convergence of numerical solution of the Fredholm integral equation of the first kind with degenerate kernel , 2006, Appl. Math. Comput..

[14]  M. Othman,et al.  Half-Sweep Algebraic Multigrid (HSAMG) Method Applied to Diffusion Equations , 2006, HPSC.

[15]  Mohamed Othman,et al.  Parallel Solution of High Speed Low Order FDTD on 2D Free Space Wave Propagation , 2007, ICCSA.

[16]  Mohamed Othman,et al.  Red-Black Half-Sweep Iterative Method Using Triangle Finite Element Approximation for 2D Poisson Equations , 2007, International Conference on Computational Science.

[17]  Xufeng Shang,et al.  Numerical solution of Fredholm integral equations of the first kind by using linear Legendre multi-wavelets , 2007, Appl. Math. Comput..

[18]  A. Saudi,et al.  Quarter-Sweep Arithmetic Mean Algorithm for water quality model , 2008, 2008 International Symposium on Information Technology.

[19]  M. Othman,et al.  Implementation of Red Black Strategy to Quarter Sweep iteration for solving first order hyperbolic equations , 2008, 2008 International Symposium on Information Technology.

[20]  S. O. Oladejo The Application of Cubic Spline Collocation to the Solution of Integral Equations , 2008 .

[21]  Jumat Sulaiman,et al.  Half-Sweep Geometric Mean Method for Solution of Linear Fredholm Equations , 2008 .