Condensable models of set theory

<jats:p>A model <jats:inline-formula><jats:alternatives><jats:tex-math>$${\mathcal {M}}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>M</mml:mi> </mml:math></jats:alternatives></jats:inline-formula> of ZF is said to be <jats:italic>condensable </jats:italic>if <jats:inline-formula><jats:alternatives><jats:tex-math>$$ {\mathcal {M}}\cong {\mathcal {M}}(\alpha )\prec _{\mathbb {L}_{{\mathcal {M}}}} {\mathcal {M}}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>M</mml:mi> <mml:mo>≅</mml:mo> <mml:mi>M</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>α</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:msub> <mml:mo>≺</mml:mo> <mml:msub> <mml:mi>L</mml:mi> <mml:mi>M</mml:mi> </mml:msub> </mml:msub> <mml:mi>M</mml:mi> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula> for some “ordinal” <jats:inline-formula><jats:alternatives><jats:tex-math>$$\alpha \in \mathrm {Ord}^{{\mathcal {M}}}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>∈</mml:mo> <mml:msup> <mml:mrow> <mml:mi>Ord</mml:mi> </mml:mrow> <mml:mi>M</mml:mi> </mml:msup> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula>, where <jats:inline-formula><jats:alternatives><jats:tex-math>$$\mathcal {M}(\alpha ):=(\mathrm {V}(\alpha ),\in )^{{\mathcal {M}}}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>M</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>α</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>:</mml:mo> <mml:mo>=</mml:mo> <mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>V</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>α</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>,</mml:mo> <mml:mo>∈</mml:mo> <mml:mo>)</mml:mo> </mml:mrow> <mml:mi>M</mml:mi> </mml:msup> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula> and <jats:inline-formula><jats:alternatives><jats:tex-math>$$\mathbb {L}_{{\mathcal {M}}}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>L</mml:mi> <mml:mi>M</mml:mi> </mml:msub> </mml:math></jats:alternatives></jats:inline-formula> is the set of formulae of the infinitary logic <jats:inline-formula><jats:alternatives><jats:tex-math>$$\mathbb {L}_{\infty ,\omega }$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>L</mml:mi> <mml:mrow> <mml:mi>∞</mml:mi> <mml:mo>,</mml:mo> <mml:mi>ω</mml:mi> </mml:mrow> </mml:msub> </mml:math></jats:alternatives></jats:inline-formula> that appear in the well-founded part of <jats:inline-formula><jats:alternatives><jats:tex-math>$${\mathcal {M}}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>M</mml:mi> </mml:math></jats:alternatives></jats:inline-formula>. The work of Barwise and Schlipf in the 1970s revealed the fact that every countable recursively saturated model of ZF is cofinally condensable (i.e., <jats:inline-formula><jats:alternatives><jats:tex-math>$${\mathcal {M}}\cong {\mathcal {M}}(\alpha ) \prec _{\mathbb {L}_{{\mathcal {M}}}}{\mathcal {M}}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>M</mml:mi> <mml:mo>≅</mml:mo> <mml:mi>M</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>α</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:msub> <mml:mo>≺</mml:mo> <mml:msub> <mml:mi>L</mml:mi> <mml:mi>M</mml:mi> </mml:msub> </mml:msub> <mml:mi>M</mml:mi> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula> for an unbounded collection of <jats:inline-formula><jats:alternatives><jats:tex-math>$$\alpha \in \mathrm {Ord}^{{\mathcal {M}}}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>∈</mml:mo> <mml:msup> <mml:mrow> <mml:mi>Ord</mml:mi> </mml:mrow> <mml:mi>M</mml:mi> </mml:msup> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula>). Moreover, it can be readily shown that any <jats:inline-formula><jats:alternatives><jats:tex-math>$$\omega $$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>ω</mml:mi> </mml:math></jats:alternatives></jats:inline-formula>-nonstandard condensable model of <jats:inline-formula><jats:alternatives><jats:tex-math>$$\mathrm {ZF}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>ZF</mml:mi> </mml:math></jats:alternatives></jats:inline-formula> is recursively saturated. These considerations provide the context for the following result that answers a question posed to the author by Paul Kindvall Gorbow.</jats:p><jats:p><jats:bold>Theorem A.</jats:bold><jats:italic>Assuming a modest set-theoretic hypothesis, there is a countable model </jats:italic><jats:inline-formula><jats:alternatives><jats:tex-math>$${\mathcal {M}}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>M</mml:mi> </mml:math></jats:alternatives></jats:inline-formula><jats:italic>of </jats:italic>ZFC <jats:italic>that is both</jats:italic><jats:italic>definably well-founded</jats:italic> (<jats:italic>i.e., every first order definable element of </jats:italic><jats:inline-formula><jats:alternatives><jats:tex-math>$${\mathcal {M}}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>M</mml:mi> </mml:math></jats:alternatives></jats:inline-formula><jats:italic> is in the well-founded part of </jats:italic><jats:inline-formula><jats:alternatives><jats:tex-math>$$\mathcal {M)}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>M</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula><jats:italic>and</jats:italic><jats:italic>cofinally condensable</jats:italic>. We also provide various equivalents of the notion of condensability, including the result below.</jats:p><jats:p><jats:bold>Theorem B.</jats:bold><jats:italic>The following are equivalent for a countable model</jats:italic><jats:inline-formula><jats:alternatives><jats:tex-math>$${\mathcal {M}}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>M</mml:mi> </mml:math></jats:alternatives></jats:inline-formula><jats:italic>of </jats:italic><jats:inline-formula><jats:alternatives><jats:tex-math>$$\mathrm {ZF}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>ZF</mml:mi> </mml:math></jats:alternatives></jats:inline-formula>: (a) <jats:inline-formula><jats:alternatives><jats:tex-math>$${\mathcal {M}}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>M</mml:mi> </mml:math></jats:alternatives></jats:inline-formula><jats:italic>is condensable</jats:italic>. (b) <jats:inline-formula><jats:alternatives><jats:tex-math>$${\mathcal {M}}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>M</mml:mi> </mml:math></jats:alternatives></jats:inline-formula><jats:italic>is cofinally condensable</jats:italic>. (c) <jats:inline-formula><jats:alternatives><jats:tex-math>$${\mathcal {M}}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>M</mml:mi> </mml:math></jats:alternatives></jats:inline-formula><jats:italic>is nonstandard and </jats:italic><jats:inline-formula><jats:alternatives><jats:tex-math>$$\mathcal {M}(\alpha )\prec _{\mathbb {L}_{{\mathcal {M}}}}{\mathcal {M}}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>M</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>α</mml:mi> <mml:m

[1]  J. Ressayre Models with compactness properties relative to an admissible language , 1977 .

[2]  John E. Hutchinson Elementary Extensions of Countable Models of Set Theory , 1976, J. Symb. Log..

[3]  Ali Enayat,et al.  Models of set theory with definable ordinals , 2005, Arch. Math. Log..

[4]  John S. Schlipf,et al.  A guide to the identification of admissible sets above structures , 1977 .

[5]  K. Calloe Doctoral Dissertation , 2019, Acta physiologica.

[6]  John S. Schlipf,et al.  Toward model theory through recursive saturation , 1978, Journal of Symbolic Logic.

[7]  Harvey M. Friedman,et al.  Countable models of set theories , 1973 .

[8]  Paul K. Gorbow,et al.  Rank-initial embeddings of non-standard models of set theory , 2019, Archive for Mathematical Logic.

[9]  Jon Barwise,et al.  Admissible sets and structures , 1975 .

[10]  Sakinah,et al.  Vol. , 2020, New Medit.

[11]  A. Wilkie,et al.  Modeles non standard en arithmetique et theorie des ensembles , 1984 .

[12]  Saharon Shelah,et al.  Models with second order properties II. Trees with no undefined branches , 1978 .

[13]  Ali Enayat On certain elementary extensions of models of set theory , 1984 .

[14]  Stuart T. Smith Nonstandard Definability , 1989, Ann. Pure Appl. Log..

[15]  A. Enayat Counting models of set theory , 2002 .

[16]  J. Schlipf,et al.  Recursively saturated models of set theory , 1980 .

[17]  K. Jon Barwise,et al.  An introduction to recursively saturated and resplendent models , 1976, Journal of Symbolic Logic.

[18]  Matt Kaufmann,et al.  A rather classless model , 1977 .