Affine adaptive filtering of CT data

A novel method for resampling and enhancing image data using multidimensional adaptive filters is presented. The underlying issue that this paper addresses is segmentation of image structures that are close in size to the voxel geometry. Adaptive filtering is used to reduce both the effects of partial volume averaging by resampling the data to a lattice with higher sample density and to reduce the image noise level. Resampling is achieved by constructing filter sets that have subpixel offsets relative to the original sampling lattice. The filters are also frequency corrected for ansisotropic voxel dimensions. The shift and the voxel dimensions are described by an affine transform and provides a model for tuning the filter frequency functions. The method has been evaluated on CT data where the voxels are in general non cubic. The in-plane resolution in CT image volumes is often higher by a factor of 3-10 than the through-plane resolution. The method clearly shows an improvement over conventional resampling techniques such as cubic spline interpolation and sinc interpolation.

[1]  R. Kikinis,et al.  An Automated Registration Algorithm for Measuring MRI Subcortical Brain Structures , 1997, NeuroImage.

[2]  F. R. A. Hopgood,et al.  Machine Intelligence 2 , 1970, The Mathematical Gazette.

[3]  P. Santago,et al.  Quantification of MR brain images by mixture density and partial volume modeling , 1993, IEEE Trans. Medical Imaging.

[4]  Leonard M. Silverman,et al.  Nonlinear Restoration of Noisy Images , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Jae S. Lim Image restoration by short space spectral subtraction , 1980, ICASSP.

[6]  Thomas S. Huang,et al.  Image processing , 1971 .

[7]  P R Morrison,et al.  Computer-augmented endoscopic sinus surgery. , 1998, Otolaryngologic clinics of North America.

[8]  R. L. Butterfield,et al.  Multispectral analysis of magnetic resonance images. , 1985, Radiology.

[9]  Paolo Russo,et al.  The Backus-Gilbert inversion method and the processing of sampled data , 1992, IEEE Trans. Signal Process..

[10]  John W. Woods,et al.  Multiple model recursive estimation of images , 1979, ICASSP.

[11]  E.E. Pissaloux,et al.  Image Processing , 1994, Proceedings. Second Euromicro Workshop on Parallel and Distributed Processing.

[12]  M. Nagao,et al.  Edge preserving smoothing , 1979 .

[13]  Hans Knutsson,et al.  Fourier Domain Design of Line and Edge Detectors , 1980 .

[14]  Andrew H. Jazwinski,et al.  Adaptive filtering , 1969, Autom..

[15]  Edward H. Adelson,et al.  The Design and Use of Steerable Filters , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Donald Michie,et al.  Machine Intelligence 7 , 1975 .

[17]  Carl-Fredrik Westin,et al.  Tensor Controlled Local Structure Enhancement of CT Images for Bone Segmentation , 1998, MICCAI.

[18]  W. Eric L. Grimson,et al.  Adaptive Segmentation of MRI Data , 1995, CVRMed.

[19]  Refractor Vision , 2000, The Lancet.

[20]  Marc Levoy,et al.  Three‐dimensional high‐resolution volume rendering (HRVR) of computed tomography data: Applications to otolaryngology—head and neck surgery , 1991, The Laryngoscope.

[21]  Xiang-Gen Xia,et al.  A note on "The Backus-Gilbert inversion method and the processing of sampled data" , 1995, IEEE Trans. Signal Process..

[22]  Carolyn A. Bucholtz,et al.  Shape-based interpolation , 1992, IEEE Computer Graphics and Applications.

[23]  Knut Conradsen,et al.  Data dependent filters for edge enhancement of Landsat images , 1987, Comput. Vis. Graph. Image Process..

[24]  Ron Kikinis,et al.  Three-Dimensional Imaging In Medicine: Surgical Planning And Simulation Of Craniofacial Surgery , 1991, Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society Volume 13: 1991.

[25]  William K. Pratt,et al.  Generalized Wiener Filtering Computation Techniques , 1972, IEEE Transactions on Computers.

[26]  J. Udupa,et al.  Shape-based interpolation of multidimensional objects. , 1990, IEEE transactions on medical imaging.

[27]  David W. Kennedy,et al.  Adult Rhinosinusitis Defined , 1997 .

[28]  Hans Knutsson,et al.  Signal processing for computer vision , 1994 .

[29]  R Kikinis,et al.  Automatic identification of gray matter structures from MRI to improve the segmentation of white matter lesions. , 1995, Journal of image guided surgery.

[30]  Xu You,et al.  Robust adaptive estimator for filtering noise in images , 1995, IEEE Trans. Image Process..

[31]  H Löwenheim,et al.  Trends and Perspectives in Minimally Invasive Surgery in Otorhinolaryngology‐Head and Neck Surgery , 1997, The Laryngoscope.

[32]  Hamid Soltanian-Zadeh,et al.  A multidimensional nonlinear edge-preserving filter for magnetic resonance image restoration , 1995, IEEE Trans. Image Process..

[33]  Jong-Sen Lee,et al.  Digital Image Enhancement and Noise Filtering by Use of Local Statistics , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  Carl-Fredrik Westin,et al.  Using local 3D structure for segmentation of bone from computer tomography images , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[35]  S. Haykin,et al.  Adaptive Filter Theory , 1986 .

[36]  T. Stephenson Image analysis , 1992, Nature.

[37]  Leszek Wojnar,et al.  Image Analysis , 1998 .

[38]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[39]  G. Backus,et al.  The Resolving Power of Gross Earth Data , 1968 .

[40]  Anthony J. Yezzi,et al.  Gradient flows and geometric active contour models , 1995, Proceedings of IEEE International Conference on Computer Vision.

[41]  Bruce Fischl,et al.  Adaptive Nonlocal Filtering: A Fast Alternative to Anisotropic Diffusion for Image Enhancement , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[42]  Alexander A. Sawchuk,et al.  Adaptive Noise Smoothing Filter for Images with Signal-Dependent Noise , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[43]  F. Jolesz,et al.  1996 RSNA Eugene P. Pendergrass New Horizons Lecture. Image-guided procedures and the operating room of the future. , 1997, Radiology.

[44]  Victor Haertel,et al.  An adaptive image enhancement algorithm , 1997, Pattern Recognit..

[45]  C T Chen,et al.  Dynamic elastic interpolation for 3D medical image reconstruction from serial cross sections. , 1988, IEEE transactions on medical imaging.

[46]  Hans Knutsson,et al.  Adaptive Filtering of Image Sequences and Volumes , 1992 .

[47]  James S. Duncan,et al.  Medical Image Analysis , 1999, IEEE Pulse.

[48]  C. Helstrom Image Restoration by the Method of Least Squares , 1967 .

[49]  R. Wilson,et al.  Anisotropic Nonstationary Image Estimation and Its Applications: Part II - Predictive Image Coding , 1983, IEEE Transactions on Communications.

[50]  M. Fried,et al.  Image‐Guided Endoscopic Surgery: Results of Accuracy and Performance in a Multicenter Clinical Study Using an Electromagnetic Tracking System , 1997, The Laryngoscope.

[51]  I. Miller Probability, Random Variables, and Stochastic Processes , 1966 .

[52]  Ron Kikinis,et al.  Markov random field segmentation of brain MR images , 1997, IEEE Transactions on Medical Imaging.

[53]  B. R. Hunt,et al.  The Application of Constrained Least Squares Estimation to Image Restoration by Digital Computer , 1973, IEEE Transactions on Computers.

[54]  D R Haynor,et al.  Partial volume tissue classification of multichannel magnetic resonance images-a mixel model. , 1991, IEEE transactions on medical imaging.

[55]  Vijay K. Anand,et al.  Surgical Management of Adult Rhinosinusitis , 1997 .

[56]  Arun N. Netravali,et al.  Image Restoration Based on a Subjective Criterion , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[57]  Olivier D. Faugeras,et al.  Co-dimension 2 Geodesic Active Contours for MRA Segmentation , 1999, IPMI.

[58]  Demetri Terzopoulos,et al.  Deformable models in medical image analysis: a survey , 1996, Medical Image Anal..

[59]  H. Knutsson Representing Local Structure Using Tensors , 1989 .

[60]  Thomas S. Huang,et al.  Edge-sensitive image restoration using order-constrained least squares methods , 1985, IEEE Trans. Acoust. Speech Signal Process..

[61]  A.E. Yagle,et al.  A multi-dimensional non-linear edge-preserving filter for magnetic resonance image restoration , 1993, 1993 IEEE Conference Record Nuclear Science Symposium and Medical Imaging Conference.

[62]  R. Wilson,et al.  Anisotropic Nonstationary Image Estimation and Its Applications: Part I - Restoration of Noisy Images , 1983, IEEE Transactions on Communications.

[63]  A. Papoulis Signal Analysis , 1977 .

[64]  Guido Gerig,et al.  Nonlinear anisotropic filtering of MRI data , 1992, IEEE Trans. Medical Imaging.