Associations of NOD2 polymorphisms with Erysipelotrichaceae in stool of in healthy first degree relatives of Crohn’s disease subjects

[1]  S. Campbell,et al.  Role of Dietary Lipids in Modulating Inflammation through the Gut Microbiota , 2019, Nutrients.

[2]  W. Turpin,et al.  Determinants of IBD Heritability: Genes, Bugs, and More. , 2018, Inflammatory bowel diseases.

[3]  Julian Parkhill,et al.  The Impact of NOD2 Variants on Fecal Microbiota in Crohn’s Disease and Controls Without Gastrointestinal Disease , 2018, Inflammatory bowel diseases.

[4]  S. Banni,et al.  Palmitic Acid: Physiological Role, Metabolism and Nutritional Implications , 2017, Front. Physiol..

[5]  P. Lawson,et al.  Description of two novel members of the family Erysipelotrichaceae: Ileibacterium valens gen. nov., sp. nov. and Dubosiella newyorkensis, gen. nov., sp. nov., from the murine intestine, and emendation to the description of Faecalibaculum rodentium. , 2017, International journal of systematic and evolutionary microbiology.

[6]  J. Hugot,et al.  Nod2: The intestinal gate keeper , 2017, PLoS pathogens.

[7]  Harry Sokol,et al.  A microbial signature for Crohn's disease , 2017, Gut.

[8]  U. Nöthlings,et al.  Genome-wide association analysis identifies variation in vitamin D receptor and other host factors influencing the gut microbiota , 2016, Nature Genetics.

[9]  T. Vatanen,et al.  The effect of host genetics on the gut microbiome , 2016, Nature Genetics.

[10]  A. Paterson,et al.  Association of host genome with intestinal microbial composition in a large healthy cohort , 2016, Nature Genetics.

[11]  Emily R. Davenport,et al.  Genetic Determinants of the Gut Microbiome in UK Twins. , 2016, Cell host & microbe.

[12]  A. Paterson,et al.  IBD Genetic Risk Profile in Healthy First-Degree Relatives of Crohn's Disease Patients. , 2016, Journal of Crohn's & colitis.

[13]  Tariq Ahmad,et al.  Inherited determinants of Crohn's disease and ulcerative colitis phenotypes: a genetic association study , 2016, The Lancet.

[14]  Z. Ruan,et al.  Stearic acid induces proinflammatory cytokine production partly through activation of lactate-HIF1α pathway in chondrocytes , 2015, Scientific Reports.

[15]  Judy H. Cho,et al.  Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations , 2015, Nature Genetics.

[16]  Wei Xu,et al.  Assessment and Selection of Competing Models for Zero-Inflated Microbiome Data , 2015, PloS one.

[17]  A. Stintzi,et al.  Functional Impacts of the Intestinal Microbiome in the Pathogenesis of Inflammatory Bowel Disease , 2015, Inflammatory bowel diseases.

[18]  Dan Knights,et al.  Complex host genetics influence the microbiome in inflammatory bowel disease , 2014, Genome Medicine.

[19]  Judy H. Cho,et al.  Immunoglobulin A Coating Identifies Colitogenic Bacteria in Inflammatory Bowel Disease , 2014, Cell.

[20]  Se Jin Song,et al.  The treatment-naive microbiome in new-onset Crohn's disease. , 2014, Cell host & microbe.

[21]  David A W Soergel,et al.  Association of gut microbiota with post-operative clinical course in Crohn’s disease , 2013, BMC Gastroenterology.

[22]  A. Bitton,et al.  Inflammatory bowel disease: a Canadian burden of illness review. , 2012, Canadian journal of gastroenterology = Journal canadien de gastroenterologie.

[23]  Ajay S. Gulati,et al.  Inflammatory Bowel Diseases Phenotype, C. difficile and NOD2 Genotype Are Associated with Shifts in Human Ileum Associated Microbial Composition , 2012, PloS one.

[24]  J. Marchini,et al.  Genotype Imputation with Thousands of Genomes , 2011, G3: Genes | Genomes | Genetics.

[25]  P. Rosenstiel,et al.  Nod2 is essential for temporal development of intestinal microbial communities , 2011, Gut.

[26]  P. Rutgeerts,et al.  Familial aggregation and antimicrobial response dose‐dependently affect the risk for Crohn's disease , 2010, Inflammatory bowel diseases.

[27]  P. Donnelly,et al.  A Flexible and Accurate Genotype Imputation Method for the Next Generation of Genome-Wide Association Studies , 2009, PLoS genetics.

[28]  Manuel A. R. Ferreira,et al.  PLINK: a tool set for whole-genome association and population-based linkage analyses. , 2007, American journal of human genetics.

[29]  J. Li,et al.  Adjusting multiple testing in multilocus analyses using the eigenvalues of a correlation matrix , 2005, Heredity.

[30]  P. Rutgeerts,et al.  Environmental Factors in Familial Crohn's Disease in Belgium , 2005, Inflammatory bowel diseases.

[31]  J. Ioannidis,et al.  Differential Effects of NOD2 Variants on Crohn's Disease Risk and Phenotype in Diverse Populations: A Metaanalysis , 2004, The American Journal of Gastroenterology.

[32]  C. O'Morain,et al.  CARD15/NOD2 mutational analysis and genotype-phenotype correlation in 612 patients with inflammatory bowel disease. , 2002, American journal of human genetics.

[33]  D. Jewell,et al.  NOD2 (CARD15), the first susceptibility gene for Crohn's disease , 2001, Gut.

[34]  Mourad Sahbatou,et al.  Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease , 2001, Nature.

[35]  Judy H. Cho,et al.  A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease , 2001, Nature.

[36]  A. Kane,et al.  Intestinal microbiota, microbial translocation, and systemic inflammation in chronic HIV infection. , 2015, The Journal of infectious diseases.

[37]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..