Technological evolution of ceramic glazes in the renaissance: In situ analysis of tiles in the Alcazar (Seville, Spain)
暂无分享,去创建一个
M. D. Robador | Philippe Walter | Anne Bouquillon | Laurence de Viguerie | Jacques Castaing | Jose Luis Perez-Rodriguez | P. Walter | L. de Viguerie | J. Castaing | J. Pérez-Rodríguez | A. Bouquillon
[1] L. Lazzarini,et al. An archaeometric contribution to the characterization of Renaissance maiolica from Urbino and a comparison with coeval maiolica from Pesaro (the Marches, central Italy) , 2014 .
[2] J. Mirão,et al. Hispano-Moresque ceramic tiles from the Monastery of Santa Clara-a-Velha (Coimbra, Portugal) , 2014 .
[3] F. d’Acapito,et al. Modified Naples yellow in Renaissance majolica: study of Pb–Sb–Zn and Pb–Sb–Fe ternary pyroantimonates by X-ray absorption spectroscopy , 2011 .
[4] Loïc Bertrand,et al. Titelbild: Zusammensetzung und Aufbau des berühmten Stradivari‐Lackes (Angew. Chem. 1/2010) , 2010 .
[5] A. Mehta,et al. Zn in Athenian Black Gloss Ceramic Slips: A Trace Element Marker for Fabrication Technology , 2015 .
[6] J. Molera,et al. Interactions between Clay Bodies and Lead Glazes , 2001 .
[7] F. Casadio,et al. On-Site Identification of Early Böttger Red Stoneware Using Portable XRF/Raman Instruments: 2, Glaze & Gilding Analysis , 2015 .
[8] Philippe Walter,et al. A portable instrument for in situ determination of the chemical and phase compositions of cultural heritage objects , 2008 .
[9] V. A. Solé,et al. A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra , 2007 .
[10] Philippe Walter,et al. Revealing the sfumato technique of Leonardo da Vinci by X-ray fluorescence spectroscopy. , 2010, Angewandte Chemie.
[11] M. Tite,et al. IZNIK POTTERY: AN INVESTIGATION OF THE METHODS OF PRODUCTION , 1989 .
[12] Anne Bouquillon,et al. THE ‘DELLA ROBBIA BLUE’: A CASE STUDY FOR THE USE OF COBALT PIGMENTS IN CERAMICS DURING THE ITALIAN RENAISSANCE* , 2006 .
[13] F. Casadio,et al. On‐Site Identification of Early BÖTTGER Red Stoneware Made at Meissen Using Portable XRF: 1, Body Analysis , 2014 .
[14] Myriam Eveno,et al. Portable Apparatus for In Situ X-Ray Diffraction and Fluorescence Analyses of Artworks , 2011, Microscopy and Microanalysis.
[15] María Auxiliadora Gómez Morón,et al. Ceramics by Niculoso Pisano and quantitative analysis of glazes using portable XRF , 2016 .
[16] M. D. Robador,et al. Ceramics from the Alcazar Palace in Seville (Spain) dated between the 11th and 15th centuries: Compositions, technological features and degradation processes , 2015 .
[17] L. Chiarantini,et al. Early Renaissance Production Recipes for Naples Yellow Pigment: A Mineralogical and Lead Isotope Study of Italian Majolica from Montelupo (Florence) , 2015 .
[18] M. Tite,et al. DISCOVERY, PRODUCTION AND USE OF TIN-BASED OPACIFIERS IN GLASSES, ENAMELS AND GLAZES FROM THE LATE IRON AGE ONWARDS: A REASSESSMENT* , 2007 .
[19] M. D. Robador,et al. The Structure and Chemical Composition of Wall Paintings From Islamic and Christian Times in the Seville Alcazar , 2016 .
[20] Pedro José Sánchez-Soto,et al. Frontal de altar y paneles cerámicos del siglo XVI en la Iglesia del Convento de Madre de Dios (Sevilla): estado de conservación y reconstrucción virtual , 2006 .
[21] A. Bouquillon,et al. Quantitative X-ray fluorescence analysis of an Egyptian faience pendant and comparison with PIXE , 2009, Analytical and bioanalytical chemistry.
[22] M. Tite. The production technology of Italian maiolica: a reassessment , 2009 .
[23] J. Mirão,et al. The Glaze Technology of Hispano-Moresque Ceramic Tiles: A Comparison Between Portuguese and Spanish Collections , 2017 .
[24] G. Bultrini,et al. Characterisation and reproduction of yellow pigments used in central Italy for decorating ceramics during Renaissance , 2006 .
[25] A. Bouquillon,et al. Quantitative elemental analysis of Della Robbia glazes with a portable XRF spectrometer and its comparison to PIXE methods , 2006 .