Investigation of PPSLT waveguides for applications in optical communication systems

In this work the performance of annealed proton-exchanged (APE) waveguides in periodically poled stoichiometric lithium tantalate (PPSLT) for high power applications in the C-band is investigated. Two APE-PPSLT chips comprising 50 waveguides produced with different poling periods and mask width for proton-exchange (PE) were characterized. The performance of the PPSLT devices was also compared with a periodically poled lithium niobate (PPLN) waveguide. Despite lower efficiency, no photorefractive issues or deleterious green light emission were observed in the PPSLT waveguides. The experimental results suggest that the homogeneity of the PPSLT waveguides can be further improved, which will enhance their efficiency.

[1]  Martin M. Fejer,et al.  Recent advances in crystal optics/Avancées récentes en optique cristalline Quasi-phasematching , 2007 .

[2]  Jacklyn D. Reis,et al.  Error-free wavelength conversion at 160 Gbit/s in PPLN waveguide at room temperature , 2009 .

[3]  Luis Arizmendi,et al.  Photonic applications of lithium niobate crystals , 2004 .

[4]  Naoya Wada,et al.  Single-Pump, Tunable Wavelength Conversion of 8×12.5 Gsymbol/s QPSK Channels in a Quasi-Rectangular PPLN , 2013 .

[5]  Wada Naoya,et al.  Phase-squeezing properties of non-degenerate PSAs using PPLN waveguides , 2011 .

[6]  Kenji Kitamura,et al.  Near-Stoichiometric LiTaO 3 for Bulk Quasi-Phase-Matched Devices , 2002 .

[7]  R. Ramponi,et al.  Optical-damage-free guided second-harmonic generation in 1% MgO-doped stoichiometric lithium tantalate. , 2006, Optics letters.

[8]  Ilaria Cristiani,et al.  Soft proton exchanged channel waveguides in congruent lithium tantalate for frequency doubling. , 2010, Optics express.

[9]  Toshiaki Suhara,et al.  Theoretical analysis of waveguide second-harmonic generation phase matched with uniform and chirped gratings , 1990 .

[10]  Michael Louis Bortz Quasi-Phasematched Optical Frequency Conversion in Lithium Niobate Waveguides. , 1995 .

[11]  Masatoshi Fujimura,et al.  Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate. , 2002, Optics letters.

[12]  M M Fejer,et al.  Tunable ultraviolet radiation by second-harmonic generation in periodically poled lithium tantalate. , 1997, Optics letters.

[13]  H. Ahlfeldt,et al.  Periodic domain inversion and generation of blue light in lithium tantalate waveguides , 1991, IEEE Photonics Technology Letters.

[14]  Tetsumi Sumiyoshi,et al.  Efficient optical parametric oscillation based on periodically poled 1.0 mol % MgO-doped stoichiometric LiTaO3 , 2004 .

[15]  R. T. Denton,et al.  Lithium Tantalate Light Modulators , 1967 .

[16]  M. Fejer,et al.  Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO 3 , 1995 .

[17]  G. Assanto,et al.  Integrated frequency shifter in periodically poled lithium tantalate waveguide , 2010 .

[18]  A. Mejia,et al.  320-to-10 Gbit / s all-optical demultiplexing using sum-frequency generation in PPLN waveguide , 2010 .

[19]  Alessia Pasquazi,et al.  Ultraviolet generation in periodically poled lithium tantalate waveguides , 2008 .