Effects of Fis on Escherichia coli gene expression during different growth stages.

Fis is a nucleoid-associated protein in Escherichia coli that is abundant during early exponential growth in rich medium but is in short supply during stationary phase. Its role as a transcriptional regulator has been demonstrated for an increasing number of genes. In order to gain insight into the global effects of Fis on E. coli gene expression during different stages of growth in rich medium, DNA microarray analyses were conducted in fis and wild-type strains during early, mid-, late-exponential and stationary growth phases. The results uncovered 231 significantly regulated genes that were distributed over 15 functional categories. Regulatory effects were observed at all growth stages examined. Coordinate upregulation was observed for a number of genes involved in translation, flagellar biosynthesis and motility, nutrient transport, carbon compound metabolism, and energy metabolism at different growth stages. Coordinate down-regulation was also observed for genes involved in stress response, amino acid and nucleotide biosynthesis, energy and intermediary metabolism, and nutrient transport. As cells transitioned from the early to the late-exponential growth phase, different functional categories of genes were regulated, and a gradual shift occurred towards mostly down-regulation. The results demonstrate that the growth phase-dependent Fis expression triggers coordinate regulation of 15 categories of functionally related genes during specific stages of growth of an E. coli culture.

[1]  A. T.,et al.  On Stringent Response , 1972, Nature.

[2]  F. Wu,et al.  Preponderance of Fis-binding sites in the R6K gamma origin and the curious effect of the penicillin resistance marker on replication of this origin in the absence of Fis , 1996, Journal of bacteriology.

[3]  S. Ueda,et al.  Growth Phase-Dependent Variation in Protein Composition of the Escherichia coli Nucleoid , 1999, Journal of bacteriology.

[4]  L. Bosch,et al.  Inactivation of the fis gene leads to reduced growth rate. , 1992, FEMS microbiology letters.

[5]  K. Skarstad,et al.  The Escherichia coli Fis protein prevents initiation of DNA replication from oriC in vitro. , 1996, Nucleic acids research.

[6]  R. Larossa,et al.  Combined, Functional Genomic-Biochemical Approach to Intermediary Metabolism: Interaction of Acivicin, a Glutamine Amidotransferase Inhibitor, with Escherichia coliK-12 , 2001, Journal of bacteriology.

[7]  L. Bosch,et al.  The mechanism of trans-activation of the Escherichia coli operon thrU(tufB) by the protein FIS. A model. , 1992, Nucleic acids research.

[8]  R. Gourse,et al.  Control of rRNA expression by small molecules is dynamic and nonredundant. , 2003, Molecular cell.

[9]  A. Kolb,et al.  Transient repressor effect of Fis on the growth phase-regulated osmE promoter of Escherichia coli K12 , 2002, Molecular Genetics and Genomics.

[10]  M. Buckle,et al.  FIS activates sequential steps during transcription initiation at a stable RNA promoter , 1997, The EMBO journal.

[11]  S. McLeod,et al.  The C-terminal domains of the RNA polymerase alpha subunits: contact site with Fis and localization during co-activation with CRP at the Escherichia coli proP P2 promoter. , 2002, Journal of molecular biology.

[12]  L. Claret,et al.  Regulation of HUα and HUβ by CRP and FIS inEscherichia coli , 1996 .

[13]  S. Busby,et al.  Suppression of FNR‐dependent transcription activation at the Escherichia coli nir promoter by Fis, IHF and H‐NS: modulation of transcription initiation by a complex nucleo‐protein assembly , 2000, Molecular microbiology.

[14]  A. Travers,et al.  CRP Modulates fis Transcription by Alternate Formation of Activating and Repressing Nucleoprotein Complexes* , 2001, The Journal of Biological Chemistry.

[15]  J. Vega,et al.  Differential regulation of the nitrate-reducing and ammonium-assimilatory systems in synchronous cultures of Chlamydomonas reinhardtii , 1991 .

[16]  R Kahmann,et al.  Regulation of crp transcription by oscillation between distinct nucleoprotein complexes , 1998, The EMBO journal.

[17]  S. Busby,et al.  Association of nucleoid proteins with coding and non-coding segments of the Escherichia coli genome , 2006, Nucleic acids research.

[18]  R. Gourse,et al.  Molecular anatomy of a transcription activation patch: FIS–RNA polymerase interactions at the Escherichia coli rrnB P1 promoter , 1997, The EMBO journal.

[19]  H. Kersten,et al.  The promoter of the tgt/sec operon in Escherichia coli is preceded by an upstream activation sequence that contains a high affinity FIS binding site. , 1992, Nucleic acids research.

[20]  Alan J Wolfe,et al.  Modulation of CRP‐dependent transcription at the Escherichia coli acsP2 promoter by nucleoprotein complexes: anti‐activation by the nucleoid proteins FIS and IHF , 2003, Molecular microbiology.

[21]  M. Anjum,et al.  The nd7‐binding protein (Nbp) regulates the ndh gene of Escherichia coti in response to growth phase and is identical to Fis , 1996, Molecular microbiology.

[22]  K. Schnetz,et al.  Antagonistic control of the Escherichia coli bgl promoter by FIS and CAP in vitro , 2000, Molecular microbiology.

[23]  R. C. Johnson,et al.  aldB, an RpoS-dependent gene in Escherichia coli encoding an aldehyde dehydrogenase that is repressed by Fis and activated by Crp , 1995, Journal of bacteriology.

[24]  G. W. Hatfield,et al.  Activation of transcription initiation from a stable RNA promoter by a Fis protein‐mediated DNA structural transmission mechanism , 2004, Molecular microbiology.

[25]  D. Ussery,et al.  The chromatin‐associated protein H‐NS alters DNA topology in vitro. , 1994, The EMBO journal.

[26]  H. Karch,et al.  Flagella of Salmonella typhimurium are a virulence factor in infected C57BL/6J mice , 1984, Infection and immunity.

[27]  H. Berg The rotary motor of bacterial flagella. , 2003, Annual review of biochemistry.

[28]  M. Winkler,et al.  Positive Growth Rate-Dependent Regulation of the pdxA, ksgA, and pdxB Genes of Escherichia coli K-12 , 2002, Journal of bacteriology.

[29]  A. Travers,et al.  FIS modulates growth phase‐dependent topological transitions of DNA in Escherichia coli , 1997, Molecular microbiology.

[30]  K. A. Walker,et al.  Deletion analysis of the fis promoter region in Escherichia coli: antagonistic effects of integration host factor and Fis , 1997, Journal of bacteriology.

[31]  A. Travers,et al.  An architectural role of the Escherichia coli chromatin protein FIS in organising DNA. , 2001, Nucleic acids research.

[32]  J. W. Campbell,et al.  Growth of Escherichia coli MG1655 on LB medium: monitoring utilization of sugars, alcohols, and organic acids with transcriptional microarrays , 2006, Applied Microbiology and Biotechnology.

[33]  F. James Rohlf,et al.  Biometry: The Principles and Practice of Statistics in Biological Research , 1969 .

[34]  K. A. Walker,et al.  Functional Determinants of the Escherichia coli fis Promoter: Roles of −35, −10, and Transcription Initiation Regions in the Response to Stringent Control and Growth Phase-Dependent Regulation , 1999, Journal of bacteriology.

[35]  R. C. Johnson,et al.  Fis activates the RpoS-dependent stationary-phase expression of proP in Escherichia coli , 1995, Journal of bacteriology.

[36]  A. Torres,et al.  The flagella of enteropathogenic Escherichia coli mediate adherence to epithelial cells , 2002, Molecular microbiology.

[37]  J. Fuchs,et al.  Multiple cis‐acting sites positively regulate Escherichia coli nrd expression , 1998, Molecular microbiology.

[38]  Dongwoo Shin,et al.  Selective Regulation of ptsG Expression by Fis , 2003, The Journal of Biological Chemistry.

[39]  Catherine A. Lee,et al.  A 40 kb chromosomal fragment encoding Salmonella typhimurium invasion genes is absent from the corresponding region of the Escherichia coli K‐12 chromosome , 1995, Molecular microbiology.

[40]  R. C. Johnson,et al.  The Fis protein: it's not just for DNA inversion anymore , 1992, Molecular microbiology.

[41]  R. Gourse,et al.  Involvement of Fis protein in replication of the Escherichia coli chromosome , 1992, Journal of bacteriology.

[42]  S. Busby,et al.  Integration of three signals at the Escherichia coli nrf promoter: a role for Fis protein in catabolite repression , 2005, Molecular microbiology.

[43]  Dong-Eun Chang,et al.  Gene expression profiling of Escherichia coli growth transitions: an expanded stringent response model , 2002, Molecular microbiology.

[44]  E. Crooke,et al.  Escherichia coli prereplication complex assembly is regulated by dynamic interplay among Fis, IHF and DnaA , 2004, Molecular microbiology.

[45]  Thomas E. Numrych,et al.  Characterization of the bacteriophage lambda excisionase (Xis) protein: the C‐terminus is required for Xis‐integrase cooperativity but not for DNA binding. , 1992, The EMBO journal.

[46]  T. Bickle,et al.  Purification and DNA-binding properties of FIS and Cin, two proteins required for the bacteriophage P1 site-specific recombination system, cin. , 1987, Journal of molecular biology.

[47]  K. A. Walker,et al.  The Escherichia coli fis Promoter Is Regulated by Changes in the Levels of Its Transcription Initiation Nucleotide CTP* , 2004, Journal of Biological Chemistry.

[48]  W. Reznikoff,et al.  Fis plays a role in Tn5 and IS50 transposition , 1992, Journal of bacteriology.

[49]  M. Hensel,et al.  Salmonella Pathogenicity Island 2 , 2000, Molecular microbiology.

[50]  L. Bosch,et al.  FIS-dependent trans activation of stable RNA operons of Escherichia coli under various growth conditions , 1992, Journal of bacteriology.

[51]  R. Kahmann,et al.  FIS is a regulator of metabolism in Escherichia coli , 1996, Molecular microbiology.

[52]  J. Guest,et al.  Transcriptional regulation of the aconitase genes (acnA and acnB) of Escherichia coli. , 1997, Microbiology.

[53]  Marcel Geertz,et al.  Homeostatic regulation of supercoiling sensitivity coordinates transcription of the bacterial genome , 2006, EMBO reports.

[54]  C. Ball,et al.  Isolation of the gene encoding the Hin recombinational enhancer binding protein. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[55]  L. Bosch,et al.  The role of FIS in trans activation of stable RNA operons of E. coli. , 1990, The EMBO journal.

[56]  S. Altuvia,et al.  Escherichia coli response to hydrogen peroxide: a role for DNA supercoiling, Topoisomerase I and Fis , 2000, Molecular microbiology.

[57]  R. C. Johnson,et al.  Salmonella typhimurium . Sequence , regulation , and functions of fis in , 1994 .

[58]  S. Aiyar,et al.  Contributions of UP Elements and the Transcription Factor FIS to Expression from the Seven rrn P1 Promoters inEscherichia coli , 2001, Journal of bacteriology.

[59]  A. Travers,et al.  A DNA architectural protein couples cellular physiology and DNA topology in Escherichia coli , 1999, Molecular microbiology.

[60]  R. C. Johnson,et al.  Localization of amino acids required for Fis to function as a class II transcriptional activator at the RpoS-dependent proP P2 promoter. , 1999, Journal of molecular biology.

[61]  T. D. Schneider,et al.  Information analysis of Fis binding sites. , 1997, Nucleic acids research.

[62]  Jason E. Stewart,et al.  Minimum information about a microarray experiment (MIAME)—toward standards for microarray data , 2001, Nature Genetics.

[63]  C. Ball,et al.  Dramatic changes in Fis levels upon nutrient upshift in Escherichia coli , 1992, Journal of bacteriology.

[64]  E. C. Grunsky,et al.  R: a data analysis and statistical programming environment-an emerging tool for the geosciences , 2002 .

[65]  R Kahmann,et al.  The E.coli fis promoter is subject to stringent control and autoregulation. , 1992, The EMBO journal.

[66]  M. Cashel,et al.  The stringent response , 1996 .

[67]  R. Gourse,et al.  A positive control mutant of the transcription activator protein FIS , 1996, Journal of bacteriology.

[68]  F. Baquero,et al.  Cyclic AMP receptor protein positively controls gyrA transcription and alters DNA topology after nutritional upshift in Escherichia coli , 1996, Journal of bacteriology.

[69]  D. Pettijohn,et al.  Interaction of the Escherichia coli HU protein with DNA. Evidence for formation of nucleosome-like structures with altered DNA helical pitch. , 1986, Journal of molecular biology.

[70]  A. Travers,et al.  The expression of the Escherichia coli fis gene is strongly dependent on the superhelical density of DNA , 2000, Molecular microbiology.

[71]  R. C. Johnson,et al.  Identification of genes negatively regulated by Fis: Fis and RpoS comodulate growth-phase-dependent gene expression in Escherichia coli , 1995, Journal of bacteriology.

[72]  R. Gourse,et al.  E.coli Fis protein activates ribosomal RNA transcription in vitro and in vivo. , 1990, The EMBO journal.

[73]  R. Macnab,et al.  Components of the Salmonella Flagellar Export Apparatus and Classification of Export Substrates , 1999, Journal of bacteriology.

[74]  L. Nilsson,et al.  Factor for Inversion Stimulation-dependent Growth Rate Regulation of Serine and Threonine tRNA Species (*) , 1995, The Journal of Biological Chemistry.

[75]  V. Emilsson,et al.  Factor for inversion stimulation-dependent growth rate regulation of individual tRNA species in Escherichia coli. , 1994, The Journal of biological chemistry.

[76]  X. Liu,et al.  The FlhD/FlhC complex, a transcriptional activator of the Escherichia coli flagellar class II operons , 1994, Journal of bacteriology.

[77]  H. Aiba,et al.  Evidence for two functional gal promoters in intact Escherichia coli cells. , 1981, The Journal of biological chemistry.

[78]  Melanie B. Berkmen,et al.  DksA potentiates direct activation of amino acid promoters by ppGpp , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[79]  R. Gourse,et al.  Regulation of rRNA Transcription Is Remarkably Robust: FIS Compensates for Altered Nucleoside Triphosphate Sensing by Mutant RNA Polymerases at Escherichia coli rrn P1 Promoters , 2000, Journal of bacteriology.

[80]  R. Kahmann,et al.  G inversion in bacteriophage Mu DNA is stimulated by a site within the invertase gene and a host factor , 1985, Cell.

[81]  C. Gualerzi,et al.  Antagonistic involvement of FIS and H‐NS proteins in the transcriptional control of hns expression , 1996, Molecular microbiology.

[82]  L. Bosch,et al.  FIS-dependent trans-activation of tRNA and rRNA operons of Escherichia coli. , 1990, Biochimica et biophysica acta.

[83]  Paul Skipp,et al.  A dedicated translation factor controls the synthesis of the global regulator Fis , 2004, The EMBO journal.

[84]  C. Ball,et al.  Efficient excision of phage lambda from the Escherichia coli chromosome requires the Fis protein , 1991, Journal of bacteriology.

[85]  C. Dorman,et al.  A global role for Fis in the transcriptional control of metabolism and type III secretion in Salmonella enterica serovar Typhimurium. , 2004, Microbiology.

[86]  M. Woodward,et al.  The role of fimbriae and flagella in the colonization, invasion and persistence of Escherichia coli O78[ratio ]K80 in the day-old-chick model , 2000, Epidemiology and Infection.

[87]  B. Woelker,et al.  The complex of oriC DNA with the DnaA initiator protein. , 1991, Research in microbiology.

[88]  A. Travers,et al.  DNA supercoiling and transcription in Escherichia coli: The FIS connection. , 2001, Biochimie.

[89]  J. Winer,et al.  Development and validation of real-time quantitative reverse transcriptase-polymerase chain reaction for monitoring gene expression in cardiac myocytes in vitro. , 1999, Analytical biochemistry.

[90]  Reid C. Johnson,et al.  Low-force DNA condensation and discontinuous high-force decondensation reveal a loop-stabilizing function of the protein Fis. , 2005, Physical review letters.

[91]  Johnf . Thompson,et al.  Cellular factors couple recombination with growth phase: Characterization of a new component in the λ site-specific recombination pathway , 1987, Cell.

[92]  S. Busby,et al.  Transcription activation by remodelling of a nucleoprotein assembly: the role of NarL at the FNR‐dependent Escherichia coli nir promoter , 2004, Molecular microbiology.

[93]  J. McClure,et al.  Transcriptional modulation of bacterial gene expression by subinhibitory concentrations of antibiotics , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[94]  L. Claret,et al.  Regulation of HU alpha and HU beta by CRP and FIS in Escherichia coli. , 1996, Journal of molecular biology.

[95]  B. Stecher,et al.  Flagella and Chemotaxis Are Required for Efficient Induction of Salmonella enterica Serovar Typhimurium Colitis in Streptomycin-Pretreated Mice , 2004, Infection and Immunity.

[96]  R. Gourse,et al.  DksA Is Required for Growth Phase-Dependent Regulation, Growth Rate-Dependent Control, and Stringent Control of fis Expression in Escherichia coli , 2006, Journal of bacteriology.

[97]  M. Simon,et al.  Host protein requirements for in vitro site-specific DNA inversion , 1986, Cell.

[98]  Reid C. Johnson,et al.  Fis Stabilizes the Interaction between RNA Polymerase and the Ribosomal Promoter rrnB P1, Leading to Transcriptional Activation* , 2003, Journal of Biological Chemistry.

[99]  The gyr genes of Salmonella enterica serovar Typhimurium are repressed by the factor for inversion stimulation, Fis , 2003, Molecular Genetics and Genomics.

[100]  Meranda D Bradley,et al.  Growth Phase-Dependent Regulation and Stringent Control of fis Are Conserved Processes in Enteric Bacteria and Involve a Single Promoter (fis P) in Escherichia coli , 2004, Journal of bacteriology.

[101]  Ross Ihaka,et al.  Gentleman R: R: A language for data analysis and graphics , 1996 .

[102]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .