Hierarchical Boltzmann simulations and model error estimation

Abstract A hierarchical simulation approach for Boltzmann's equation should provide a single numerical framework in which a coarse representation can be used to compute gas flows as accurately and efficiently as in computational fluid dynamics, but a subsequent refinement allows to successively improve the result to the complete Boltzmann result. We use Hermite discretization, or moment equations, for the steady linearized Boltzmann equation for a proof-of-concept of such a framework. All representations of the hierarchy are rotationally invariant and the numerical method is formulated on fully unstructured triangular and quadrilateral meshes using a implicit discontinuous Galerkin formulation. We demonstrate the performance of the numerical method on model problems which in particular highlights the relevance of stability of boundary conditions on curved domains. The hierarchical nature of the method allows also to provide model error estimates by comparing subsequent representations. We present various model errors for a flow through a curved channel with obstacles.

[1]  J. Hesthaven,et al.  Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .

[2]  M. Torrilhon,et al.  The shock tube study in extended thermodynamics , 2001 .

[3]  H. Struchtrup,et al.  Thermodynamically admissible boundary conditions for the regularized 13 moment equations , 2016 .

[4]  Lorenzo Pareschi,et al.  Numerical Solution of the Boltzmann Equation I: Spectrally Accurate Approximation of the Collision Operator , 2000, SIAM J. Numer. Anal..

[5]  M. Torrilhon Modeling Nonequilibrium Gas Flow Based on Moment Equations , 2016 .

[6]  Magnus Svärd,et al.  Well-Posed Boundary Conditions for the Navier-Stokes Equations , 2005, SIAM J. Numer. Anal..

[7]  Derek B. Ingham,et al.  Laminar boundary layer on an impulsively started rotating sphere , 1979 .

[8]  Manuel Torrilhon,et al.  Characteristic waves and dissipation in the 13-moment-case , 2000 .

[9]  G. Bird Molecular Gas Dynamics and the Direct Simulation of Gas Flows , 1994 .

[10]  Shi Jin,et al.  A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources , 2009, J. Comput. Phys..

[11]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[12]  Manuel Torrilhon,et al.  Fokker–Planck model for computational studies of monatomic rarefied gas flows , 2011, Journal of Fluid Mechanics.

[13]  Christophe Geuzaine,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[14]  Manuel Torrilhon,et al.  Explicit fluxes and productions for large systems of the moment method based on extended thermodynamics , 2003 .

[15]  Manuel Torrilhon,et al.  Numerical Study of Partially Conservative Moment Equations in Kinetic Theory , 2017 .

[16]  Irene M. Gamba,et al.  Spectral-Lagrangian methods for collisional models of non-equilibrium statistical states , 2009, J. Comput. Phys..

[17]  Manuel Torrilhon,et al.  Boundary conditions for regularized 13-moment-equations for micro-channel-flows , 2008, J. Comput. Phys..

[18]  I. Müller,et al.  Rational Extended Thermodynamics , 1993 .

[19]  H. Grad On the kinetic theory of rarefied gases , 1949 .

[20]  Michael N. Macrossan,et al.  Solving the discrete S-model kinetic equations with arbitrary order polynomial approximations , 2014, J. Comput. Phys..

[21]  Lowell L. Baker,et al.  Variance reduction for Monte Carlo solutions of the Boltzmann equation , 2005 .

[22]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[23]  P. Mazur,et al.  Non-equilibrium thermodynamics, , 1963 .

[24]  Ruo Li,et al.  Numerical Regularized Moment Method of Arbitrary Order for Boltzmann-BGK Equation , 2010, SIAM J. Sci. Comput..

[25]  Manuel Torrilhon,et al.  H theorem, regularization, and boundary conditions for linearized 13 moment equations. , 2007, Physical review letters.

[26]  Luc Mieussens,et al.  A multiscale kinetic-fluid solver with dynamic localization of kinetic effects , 2009, J. Comput. Phys..

[27]  Manuel Torrilhon,et al.  Approximation of the linearized Boltzmann collision operator for hard-sphere and inverse-power-law models , 2015, J. Comput. Phys..

[28]  M. Torrilhon Convergence Study of Moment Approximations for Boundary Value Problems of the Boltzmann-BGK Equation , 2015 .

[29]  Kurt Friedrichs,et al.  Symmetric positive linear differential equations , 1958 .

[30]  L. Mieussens,et al.  Numerical simulation of micro flows with moving obstacles , 2012 .

[31]  Timothy J. Tautges,et al.  MOAB : a mesh-oriented database. , 2004 .

[32]  Christian Schmeiser,et al.  Convergence of Moment Methods for Linear Kinetic Equations , 1998 .

[33]  C. Cercignani The Boltzmann equation and its applications , 1988 .

[34]  H. Struchtrup Macroscopic transport equations for rarefied gas flows , 2005 .

[35]  M. Torrilhon Slow gas microflow past a sphere: Analytical solution based on moment equations , 2010 .

[36]  H. Struchtrup,et al.  Regularization of Grad’s 13 moment equations: Derivation and linear analysis , 2003 .

[37]  Olaf Schenk,et al.  Solving unsymmetric sparse systems of linear equations with PARDISO , 2004, Future Gener. Comput. Syst..