Quantification of Bacterial Populations Indigenous to Acidic Drainage Streams

[1]  G. Ferroni,et al.  The potential of mining slag as a substrate for microbial growth and the microbiological analysis of slag and slag seepage , 1997, Antonie van Leeuwenhoek.

[2]  O. Tuovinen,et al.  Studies on the growth of Thiobacillus ferrooxidans , 1974, Archives of Microbiology.

[3]  I. McDonald,et al.  Proposal for the reclassification of Thiobacillus novellus as Starkeya novella gen. nov., comb. nov., in the alpha-subclass of the Proteobacteria. , 2000, International journal of systematic and evolutionary microbiology.

[4]  D. Kelly,et al.  Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov. , 2000, International journal of systematic and evolutionary microbiology.

[5]  S. Takaichi,et al.  Phylogeny and photosynthetic features of Thiobacillus acidophilus and related acidophilic bacteria: its transfer to the genus Acidiphilium as Acidiphilium acidophilum comb. nov. , 1998, International journal of systematic bacteriology.

[6]  B. Heusinkveld,et al.  Temperature Behavior of a Natural Shallow Water Body during a Summer Period , 1998 .

[7]  G. Ferroni,et al.  Iron‐oxidizing autotrophs and acidophilic heterotrophs from uranium mine environments , 1997 .

[8]  R. Popa,et al.  Characterization of Thiobacillus thioparus LV43 and its distribution in a chemoautotrophically based groundwater ecosystem , 1997, Applied and environmental microbiology.

[9]  J. Trevors,et al.  Resistance to heavy metals in different strains of Thiobacillus ferrooxidans , 1997 .

[10]  K. Bosecker,et al.  Bioleaching: metal solubilization by microorganisms , 1997 .

[11]  R. Amils,et al.  Phylogeny of Thiobacillus cuprinus and other mixotrophic thiobacilli: proposal for Thiomonas gen. nov. , 1997, International journal of systematic bacteriology.

[12]  D. Fortin,et al.  Microbial sulfate reduction within sulfidic mine tailings: Formation of diagenetic Fe sulfides , 1997 .

[13]  W. Sand,et al.  Sulfur chemistry in bacterial leaching of pyrite , 1996, Applied and environmental microbiology.

[14]  J. Finch,et al.  Fundamental study of an ambient temperature ferrite process in the treatment of acid mine drainage , 1996 .

[15]  N. Gray A substrate classification index for the visual assessment of the impact of acid mine drainage in lotic systems , 1996 .

[16]  D. Johnson Selective solid media for isolating and enumerating acidophilic bacteria , 1995 .

[17]  W. Sand,et al.  Microbial diversity in uranium mine waste heaps , 1995, Applied and environmental microbiology.

[18]  Douglas E. Rawlings,et al.  Mining with Microbes , 1995, Bio/Technology.

[19]  J. McGraw,et al.  Plant Litter Decomposition in Wetlands Receiving Acid Mine Drainage , 1995 .

[20]  D. Blowes,et al.  Microbiological, chemical, and mineralogical characterization of the kidd creek mine tailings impoundment, Timmins area, Ontario , 1995 .

[21]  R. Arnold,et al.  Control of Thiobacillus by means of microbial competition: Implications for corrosion of concrete sewers , 1995 .

[22]  I. Suzuki,et al.  Thiosulfate oxidation by sulfur-grown Thiobacillus thiooxidans cells, cell-free extracts, and thiosulfate-oxidizing enzyme , 1994 .

[23]  G. Ferroni,et al.  The chemolithotrophic bacterium Thiobacillus ferrooxidans , 1994 .

[24]  H. Yamazaki,et al.  Use of Cellulosic Substrates for the Microbial Treatment of Acid Mine Drainage , 1994 .

[25]  G. Ferroni,et al.  The absence of psychrophilic Thiobacillus ferrooxidans and acidophilic heterotrophic bacteria in cold, tailings effluents from a uranium mine , 1994 .

[26]  K. White,et al.  Metal transport in a stream polluted by acid mine drainage--The Afon Goch, Anglesey, UK. , 1994, Environmental pollution.

[27]  D. Johnson,et al.  Seasonal variations in the microbiology and chemistry if an acid mine drainage stream , 1993 .

[28]  J. Trevors,et al.  Thermal characterization of different isolates of Thiobacillus ferrooxidans , 1993 .

[29]  G. Ferroni,et al.  Temperature studies of iron-oxidizing autotrophs and acidophilic heterotrophs isolated from uranium mines , 1993 .

[30]  I. Pulford,et al.  Seasonal variation of pyrite oxidation rates in colliery spoil , 1993 .

[31]  T. Beveridge,et al.  Enumeration of Thiobacilli within pH-Neutral and Acidic Mine Tailings and Their Role in the Development of Secondary Mineral Soil , 1992, Applied and environmental microbiology.

[32]  W. Sand,et al.  Evaluation of Leptospirillum ferrooxidans for Leaching , 1992, Applied and environmental microbiology.

[33]  D. Johnson,et al.  Microbiological and chemical characteristics of an acidic stream draining a disused copper mine. , 1992, Environmental pollution.

[34]  D. Johnson,et al.  A highly effecient and universal solid medium for growing mesophilic and moderately thermophilic, iron-oxidizing, acidophilic bacteria , 1991 .

[35]  A. Das,et al.  Acidiphilium symbioticum sp.nov., an acidophilic heterotrophic bacterium from Thiobacillus ferrooxidans cultures isolated from Indian mines , 1991 .

[36]  P. Visca,et al.  A NEW SOLID MEDIUM FOR ISOLATING AND ENUMERATING THIOBACILLUS-FERROOXIDANS , 1989 .

[37]  D. Johnson,et al.  A new solid medium for the isolation and enumeration of Thiobacillus ferrooxidans and acidophilic heterotrophic bacteria , 1987 .

[38]  M. Silver Distribution of Iron-Oxidizing Bacteria in the Nordic Uranium Tailings Deposit, Elliot Lake, Ontario, Canada , 1987, Applied and environmental microbiology.

[39]  D. Holmes,et al.  Acidiphilium organovorum sp. nov., an Acidophilic Heterotroph Isolated from a Thiobacillus ferrooxidans Culture , 1986 .

[40]  M. Todd,et al.  ISOLATION AND TEMPERATURE CHARACTERIZATION OF PSYCHROTROPHIC STRAINS OF THIOBACILLUS FERROOXIDANS FROM THE ENVIRONMENT OF A URANIUM MINE , 1986 .

[41]  A. P. Harrison The acidophilic thiobacilli and other acidophilic bacteria that share their habitat. , 1984, Annual review of microbiology.

[42]  O. Tuovinen,et al.  Flagella and Pili of Iron-Oxidizing Thiobacilli Isolated from a Uranium Mine in Northern Ontario, Canada , 1982, Applied and environmental microbiology.

[43]  A. P. Harrison Acidiphilium cryptum gen. nov., sp. nov., Heterotrophic Bacterium From Acidic Mineral Environments , 1981 .

[44]  R. F. Unz,et al.  Acidophilic, Heterotrophic Bacteria of Acidic Mine Waters , 1981, Applied and environmental microbiology.

[45]  J. D. de Bont,et al.  Thiobacillus acidophilus: a study of its presence in Thiobacillus ferrooxidans cultures. , 1980, Canadian journal of microbiology.

[46]  A. P. Harrison Microbial succession and mineral leaching in an artificial coal spoil , 1978, Applied and environmental microbiology.

[47]  J. Hobbie,et al.  Use of nuclepore filters for counting bacteria by fluorescence microscopy , 1977, Applied and environmental microbiology.

[48]  H. L. Manning New medium for isolating iron-oxidizing and heterotrophic acidophilic bacteria from acid mine drainage. , 1975, Applied microbiology.

[49]  E. R. Allen,et al.  The Sulfur Cycle , 1972, Science.

[50]  P. Dugan,et al.  Aerobic Heterotrophic Bacteria Indigenous to pH 2.8 Acid Mine Water: Predominant Slime-Producing Bacteria in Acid Streamers , 1970, Journal of bacteriology.

[51]  J. H. Tuttle,et al.  Activity of Microorganisms in Acid Mine Water I. Influence of Acid Water on Aerobic Heterotrophs of a Normal Stream , 1968, Journal of bacteriology.