Genomic Analysis of the Necrotrophic Fungal Pathogens Sclerotinia sclerotiorum and Botrytis cinerea

Sclerotinia sclerotiorum and Botrytis cinerea are closely related necrotrophic plant pathogenic fungi notable for their wide host ranges and environmental persistence. These attributes have made these species models for understanding the complexity of necrotrophic, broad host-range pathogenicity. Despite their similarities, the two species differ in mating behaviour and the ability to produce asexual spores. We have sequenced the genomes of one strain of S. sclerotiorum and two strains of B. cinerea. The comparative analysis of these genomes relative to one another and to other sequenced fungal genomes is provided here. Their 38–39 Mb genomes include 11,860–14,270 predicted genes, which share 83% amino acid identity on average between the two species. We have mapped the S. sclerotiorum assembly to 16 chromosomes and found large-scale co-linearity with the B. cinerea genomes. Seven percent of the S. sclerotiorum genome comprises transposable elements compared to <1% of B. cinerea. The arsenal of genes associated with necrotrophic processes is similar between the species, including genes involved in plant cell wall degradation and oxalic acid production. Analysis of secondary metabolism gene clusters revealed an expansion in number and diversity of B. cinerea–specific secondary metabolites relative to S. sclerotiorum. The potential diversity in secondary metabolism might be involved in adaptation to specific ecological niches. Comparative genome analysis revealed the basis of differing sexual mating compatibility systems between S. sclerotiorum and B. cinerea. The organization of the mating-type loci differs, and their structures provide evidence for the evolution of heterothallism from homothallism. These data shed light on the evolutionary and mechanistic bases of the genetically complex traits of necrotrophic pathogenicity and sexual mating. This resource should facilitate the functional studies designed to better understand what makes these fungi such successful and persistent pathogens of agronomic crops.

Bernard Henrissat | Hadi Quesneville | Paul S. Dyer | Patrick Wincker | Isabelle Benoit | Qiandong Zeng | Evan Mauceli | Oded Yarden | Ronald P. de Vries | Christina A. Cuomo | Barbara J. Howlett | Julie Poulain | Kim M. Plummer | Corinne Da Silva | Ourdia Bouzid | Joelle Amselem | Nicolas Lapalu | Pedro M. Coutinho | Baptiste Brault | Adeline Simon | Sabine Fillinger | Marc-Henri Lebrun | Nicholas J. Talbot | Cécile Neuvéglise | Lilian Gout | Tatiana Giraud | Elisabeth Fournier | Darren M. Soanes | Angélique Gautier | Q. Zeng | Zehua Chen | E. Mauceli | J. Poulain | E. Danchin | U. Güldener | P. Wincker | N. Talbot | B. Henrissat | A. Couloux | T. Giraud | H. Quesneville | S. Fillinger | C. Kodira | Matthew D. Pearson | C. Yandava | C. Neuvéglise | Véronique Anthouard | C. Cuomo | Béatrice Segurens | R. D. de Vries | P. Coutinho | O. Yarden | M. Dickman | R. Beever | D. Soanes | P. Cotton | M. Lebrun | A. Sharon | J. Amselem | K. Plummer | C. Levis | L. Kohn | P. Dyer | J. V. van Kan | C. da Silva | N. Lapalu | M. Choquer | C. Rascle | J. Schumacher | A. Simon | M. Viaud | N. Poussereau | J. Collemare | L. Gout | B. Howlett | E. P. Benito | E. Fournier | M. Hahn | J. Pradier | Emmanuel Quevillon | A. ten Have | B. Tudzynski | P. Tudzynski | M. Andrew | R. Beffa | I. Benoit | Ourdia Bouzid | Baptiste Brault | A. Gautier | C. Giraud | Celedonio González | S. Grossetête | M. Kretschmer | A. Lappartient | M. Leroch | B. Oeser | A. Sexton | Evelyn Silva | C. Sirven | M. Templeton | J. Rollins | Zehua Chen | Chandri Yandava | Arnaud Couloux | Chinnappa Kodira | Matthias Kretschmer | Matthias Hahn | Béatrice Ségurens | Véronique Anthouard | Ulrich Güldener | Arjen ten Have | Jan A. L. van Kan | Muriel Viaud | Ernesto P. Benito | Linda Kohn | Jean-Marc Pradier | Emmanuel Quévillon | Amir Sharon | Bettina Tudzynski | Paul Tudzynski | Marion Andrew | Ross E. Beever | Rolland Beffa | Mathias Choquer | Jérome Collémare | Pascale Cotton | Etienne G. Danchin | Corinne Giraud | Celedonio Gonzalez | Sandrine Grossetete | Anne Lappartient | Michaela Leroch | Caroline Levis | Birgitt Oeser | Matthew Pearson | Nathalie Poussereau | Christine Rascle | Julia Schumacher | Adrienne Sexton | Evelyn Silva | Catherine Sirven | Matt Templeton | Jeffrey A. Rollins | Marty Dickman | C. González | Béatrice Ségurens | Qiandong Zeng | Sandrine Grossetête | Nicolas Lapalu

[1]  C. Levis,et al.  Flipper, a mobile Fot1-like transposable element in Botrytis cinerea , 1997, Molecular and General Genetics MGG.

[2]  T. Toyomasu,et al.  Fusicoccins are biosynthesized by an unusual chimera diterpene synthase in fungi , 2007, Proceedings of the National Academy of Sciences.

[3]  S. Salzberg,et al.  Versatile and open software for comparing large genomes , 2004, Genome Biology.

[4]  J. Schumacher,et al.  The Botrytis cinerea phytotoxin botcinic acid requires two polyketide synthases for production and has a redundant role in virulence with botrydial. , 2011, Molecular plant pathology.

[5]  Natalie L. Catlett,et al.  Whole-Genome Analysis of Two-Component Signal Transduction Genes in Fungal Pathogens , 2003, Eukaryotic Cell.

[6]  Brett Williams,et al.  Tipping the Balance: Sclerotinia sclerotiorum Secreted Oxalic Acid Suppresses Host Defenses by Manipulating the Host Redox Environment , 2011, PLoS pathogens.

[7]  M. Dickman,et al.  pH Signaling in Sclerotinia sclerotiorum: Identification of a pacC/RIM1 Homolog , 2001, Applied and Environmental Microbiology.

[8]  J. V. van Kan,et al.  NADPH oxidases are involved in differentiation and pathogenicity in Botrytis cinerea. , 2008, Molecular plant-microbe interactions : MPMI.

[9]  Christina A. Cuomo,et al.  The Fusarium graminearum Genome Reveals a Link Between Localized Polymorphism and Pathogen Specialization , 2007, Science.

[10]  V. Berteaux-Lecellier,et al.  Mating systems and sexual morphogenesis in Ascomycetes , 2010 .

[11]  Thomas Schiex,et al.  EUGÈNE: An Eukaryotic Gene Finder That Combines Several Sources of Evidence , 2000, JOBIM.

[12]  S. Brunak,et al.  SHORT COMMUNICATION Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites , 1997 .

[13]  D. Hewitt,et al.  Reactive oxygen species and development in microbial eukaryotes. , 2005, Trends in microbiology.

[14]  Rolf Apweiler,et al.  InterProScan: protein domains identifier , 2005, Nucleic Acids Res..

[15]  David Posada,et al.  MODELTEST: testing the model of DNA substitution , 1998, Bioinform..

[16]  N. Talbot,et al.  Genome-wide functional analysis reveals that infection-associated fungal autophagy is necessary for rice blast disease , 2009, Proceedings of the National Academy of Sciences.

[17]  P. Dyer Evolutionary Biology: Genomic Clues to Original Sex in Fungi , 2008, Current Biology.

[18]  A. J. Colmenares,et al.  The Putative Role of Botrydial and Related Metabolites in the Infection Mechanism of Botrytis cinerea , 2002, Journal of Chemical Ecology.

[19]  O. Yarden,et al.  Sclerotial development in Sclerotinia sclerotiorum: awakening molecular analysis of a “Dormant” structure , 2008 .

[20]  Yvan Saeys,et al.  SpliceMachine: predicting splice sites from high-dimensional local context representations , 2005, Bioinform..

[21]  J. Weissenbach,et al.  Expressed sequence tags from the phytopathogenic fungus Botrytis cinerea , 2005, European Journal of Plant Pathology.

[22]  J. Heitman,et al.  Identification of the sex genes in an early diverged fungus , 2008, Nature.

[23]  R. Lumsden,et al.  Oxah'c acid production by Sclero-tinia sclerotiorum in infected Bean and in culture. , 1970 .

[24]  U. Güldener,et al.  Pathogenicity Determinants in Smut Fungi Revealed by Genome Comparison , 2010, Science.

[25]  David Hewitt,et al.  A five-gene phylogeny of Pezizomycotina. , 2006, Mycologia.

[26]  Christina A. Cuomo,et al.  Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae , 2005, Nature.

[27]  T. Flutre,et al.  Considering Transposable Element Diversification in De Novo Annotation Approaches , 2011, PloS one.

[28]  D. Hibbett,et al.  Toward a phylogenetic classification of the leotiomycetes based on rDNA data. , 2006, Mycologia.

[29]  Eric Biot,et al.  ANAIS: Analysis of NimbleGen Arrays Interface , 2010, Bioinform..

[30]  K. Jakobsen,et al.  Molecular phylogeny and evolution of Monilinia (Sclerotiniaceae) based on coding and noncoding rDNA sequences. , 1997, American journal of botany.

[31]  Brett Williams,et al.  Plant programmed cell death: can't live with it; can't live without it. , 2008, Molecular plant pathology.

[32]  Jos Boekhorst,et al.  Evolution of prokaryotic subtilases: Genome‐wide analysis reveals novel subfamilies with different catalytic residues , 2007, Proteins.

[33]  D. Garfinkel,et al.  Ty1 Copy Number Dynamics in Saccharomyces , 2005, Genetics.

[34]  R. Bligny,et al.  Dynamic carbon transfer during pathogenesis of sunflower by the necrotrophic fungus Botrytis cinerea: from plant hexoses to mannitol. , 2009, The New phytologist.

[35]  T. Reape,et al.  Apoptotic-like regulation of programmed cell death in plants , 2010, Apoptosis.

[36]  E. Parker,et al.  The genetic basis for indole-diterpene chemical diversity in filamentous fungi. , 2008, Mycological research.

[37]  M. Dickman,et al.  Subversion or coersion? Pathogenic deteminants in fungal phytopathogens , 2007 .

[38]  M. Berbee,et al.  Evolution of the fungal self-fertile reproductive life style from self-sterile ancestors. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Christopher G. Love,et al.  Comparison of transcription of multiple genes at three developmental stages of the plant pathogen Sclerotinia sclerotiorum. , 2006, FEMS microbiology letters.

[40]  Brandi L. Cantarel,et al.  The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics , 2008, Nucleic Acids Res..

[41]  D. Holmes,et al.  Generation and analysis of expressed sequence tags from Botrytis cinerea. , 2006, Biological research.

[42]  J. Schumacher,et al.  The cAMP-dependent signaling pathway and its role in conidial germination, growth, and virulence of the gray mold Botrytis cinerea. , 2008, Molecular plant-microbe interactions : MPMI.

[43]  M. Daly,et al.  MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. , 1987, Genomics.

[44]  P. Dyer,et al.  Sexual development and cryptic sexuality in fungi: insights from Aspergillus species. , 2012, FEMS microbiology reviews.

[45]  M. James,et al.  The molecular structure and catalytic mechanism of a novel carboxyl peptidase from Scytalidium lignicolum. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[46]  J. Schumacher,et al.  The Gα subunit BCG1, the phospholipase C (BcPLC1) and the calcineurin phosphatase co‐ordinately regulate gene expression in the grey mould fungus Botrytis cinerea , 2008, Molecular microbiology.

[47]  Milton H. Saier,et al.  TCDB: the Transporter Classification Database for membrane transport protein analyses and information , 2005, Nucleic Acids Res..

[48]  D. Maxwell Oxalate formation in Whetzelinia sclerotiorum by oxaloacetate acetylhydrolase , 1973 .

[49]  Michael Freitag,et al.  Lessons from the Genome Sequence of Neurospora crassa: Tracing the Path from Genomic Blueprint to Multicellular Organism , 2004, Microbiology and Molecular Biology Reviews.

[50]  J. V. van Kan,et al.  Sexual mating of Botrytis cinerea illustrates PRP8 intein HEG activity. , 2010, Fungal genetics and biology : FG & B.

[51]  J. J. Coleman,et al.  Efflux in Fungi: La Pièce de Résistance , 2009, PLoS pathogens.

[52]  S. Kroken,et al.  Genomic and Population Analyses of the Mating Type Loci in Coccidioides Species Reveal Evidence for Sexual Reproduction and Gene Acquisition , 2007, Eukaryotic Cell.

[53]  J. Turrion-Gomez,et al.  Flux of nitric oxide between the necrotrophic pathogen Botrytis cinerea and the host plant. , 2011, Molecular plant pathology.

[54]  P. Sharp,et al.  Regional base composition variation along yeast chromosome III: evolution of chromosome primary structure. , 1993, Nucleic acids research.

[55]  Yasin F. Dagdas,et al.  Anti-Apoptotic Machinery Protects the Necrotrophic Fungus Botrytis cinerea from Host-Induced Apoptotic-Like Cell Death during Plant Infection , 2011, PLoS pathogens.

[56]  G. Russo,et al.  Identification of a development-specific protein in sclerotia of Sclerotinia sclerotiorum , 1982 .

[57]  D. Swofford PAUP*: Phylogenetic analysis using parsimony (*and other methods), Version 4.0b10 , 2002 .

[58]  Jean,et al.  Effector diversification within compartments of the Leptosphaeria maculans genome affected by Repeat-Induced Point mutations , 2011, Nature communications.

[59]  M. Lebrun,et al.  The tetraspanin BcPls1 is required for appressorium‐mediated penetration of Botrytis cinerea into host plant leaves , 2003, Molecular microbiology.

[60]  J. Thompson,et al.  The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. , 1997, Nucleic acids research.

[61]  R. Dean,et al.  Two Novel Fungal Virulence Genes Specifically Expressed in Appressoria of the Rice Blast Fungus Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.003426. , 2002, The Plant Cell Online.

[62]  J. Rollins,et al.  The development-specific ssp1 and ssp2 genes of Sclerotinia sclerotiorum encode lectins with distinct yet compensatory regulation. , 2010, Fungal genetics and biology : FG & B.

[63]  T. Giraud,et al.  Assessing the performance of single-copy genes for recovering robust phylogenies. , 2008, Systematic biology.

[64]  J. Kay,et al.  The Botrytis cinerea aspartic proteinase family. , 2010, Fungal genetics and biology : FG & B.

[65]  P. Dodds,et al.  Co-evolutionary interactions between host resistance and pathogen effector genes in flax rust disease. , 2011, Molecular plant pathology.

[66]  Anne Osbourn,et al.  Secondary metabolic gene clusters: evolutionary toolkits for chemical innovation. , 2010, Trends in genetics : TIG.

[67]  N. Talbot,et al.  Autophagic Fungal Cell Death Is Necessary for Infection by the Rice Blast Fungus , 2006, Science.

[68]  P. Marcianò,et al.  Oxalic acid, cell wall-degrading enzymes and pH in pathogenesis and their significance in the virulence of two Sclerotinia sclerotiorum isolates on sunflower , 1983 .

[69]  H. Cutler,et al.  Botcinins E and F and Botcinolide from Botrytis cinerea and structural revision of botcinolides. , 2006, Journal of natural products.

[70]  J. Kan,et al.  Genetic variation and segregation of DNA polymorphisms in Botrytis cinerea. , 1993 .

[71]  Seogchan Kang,et al.  Translocation of Magnaporthe oryzae Effectors into Rice Cells and Their Subsequent Cell-to-Cell Movement[W][OA] , 2010, Plant Cell.

[72]  W. Hansberg,et al.  Hyperoxidant states cause microbial cell differentiation by cell isolation from dioxygen. , 1990, Journal of theoretical biology.

[73]  P. Tudzynski,et al.  Botrytis cinerea: Molecular Aspects of a Necrotrophic Life Style , 2009 .

[74]  D. Posada,et al.  Model selection and model averaging in phylogenetics: advantages of akaike information criterion and bayesian approaches over likelihood ratio tests. , 2004, Systematic biology.

[75]  B. Turgeon,et al.  Phylogenomics reveals subfamilies of fungal nonribosomal peptide synthetases and their evolutionary relationships , 2010, BMC Evolutionary Biology.

[76]  R. Guimarães,et al.  Oxalate Production by Sclerotinia sclerotiorum Deregulates Guard Cells during Infection1[w] , 2004, Plant Physiology.

[77]  P. Tudzynski,et al.  Does botrytis cinerea Ignore H(2)O(2)-induced oxidative stress during infection? Characterization of botrytis activator protein 1. , 2009, Molecular plant-microbe interactions : MPMI.

[78]  V. Siewers,et al.  Identification of an Abscisic Acid Gene Cluster in the Grey Mold Botrytis cinerea , 2006, Applied and Environmental Microbiology.

[79]  Diane O. Inglis,et al.  Evolution of the Mating Type Locus: Insights Gained from the Dimorphic Primary Fungal Pathogens Histoplasma capsulatum, Coccidioides immitis, and Coccidioides posadasii , 2007, Eukaryotic Cell.

[80]  R. Oliver,et al.  A unique wheat disease resistance-like gene governs effector-triggered susceptibility to necrotrophic pathogens , 2010, Proceedings of the National Academy of Sciences.

[81]  A. Voragen,et al.  Non-starch polysaccharides from sunflower (Helianthus annuus) meal and palm-kernel (Elaeis guineensis) meal - Investigation of the structure of major polysaccharides. , 1992 .

[82]  David Hewitt,et al.  The Ascomycota tree of life: a phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits. , 2009, Systematic biology.

[83]  M. Dickman,et al.  Use of mutants to demonstrate the role of oxalic acid in pathogenicity of Sclerotinia sclerotiorum on Phaseolus vulgaris. , 1990 .

[84]  J. Rollins The Sclerotinia sclerotiorum pac1 gene is required for sclerotial development and virulence. , 2003, Molecular plant-microbe interactions : MPMI.

[85]  J. Latgé,et al.  Evidence for Sexuality in the Opportunistic Fungal Pathogen Aspergillus fumigatus , 2005, Current Biology.

[86]  N. Talbot,et al.  Under pressure: investigating the biology of plant infection by Magnaporthe oryzae , 2009, Nature Reviews Microbiology.

[87]  J. Rollins,et al.  The development-specific protein (Ssp1) from Sclerotinia sclerotiorum is encoded by a novel gene expressed exclusively in sclerotium tissues , 2009, Mycologia.

[88]  S. Beer,et al.  SIMULTANEOUS PRODUCTION AND SYNERGISTIC ACTION OF OXALIC ACID AND POLYGALACTURONASE DURING PATHOGENESIS BY SCLEROTIUM ROLFSII. , 1965, Phytopathology.

[89]  Pari Skamnioti,et al.  Genome Expansion and Gene Loss in Powdery Mildew Fungi Reveal Tradeoffs in Extreme Parasitism , 2010, Science.

[90]  K. Mendgen,et al.  The role of mitogen-activated protein (MAP) kinase signalling components and the Ste12 transcription factor in germination and pathogenicity of Botrytis cinerea. , 2010, Molecular plant pathology.

[91]  B. Scott,et al.  NADPH oxidases in fungi: diverse roles of reactive oxygen species in fungal cellular differentiation. , 2007, Fungal genetics and biology : FG & B.

[92]  S. Fillinger,et al.  Fungicide-Driven Evolution and Molecular Basis of Multidrug Resistance in Field Populations of the Grey Mould Fungus Botrytis cinerea , 2009, PLoS pathogens.

[93]  C. Schmidt-Dannert,et al.  Diversity of sesquiterpene synthases in the basidiomycete Coprinus cinereus , 2009, Molecular microbiology.

[94]  A. Ashby,et al.  Cloning of the mating type loci from Pyrenopeziza brassicae reveals the presence of a novel mating type gene within a discomycete MAT 1‐2 locus encoding a putative metallothionein‐like protein , 1998, Molecular microbiology.

[95]  H. U. Böhnert,et al.  Biosynthesis of secondary metabolites in the rice blast fungus Magnaporthe grisea: the role of hybrid PKS-NRPS in pathogenicity. , 2008, Mycological research.

[96]  James K. Hane,et al.  Dothideomycete–Plant Interactions Illuminated by Genome Sequencing and EST Analysis of the Wheat Pathogen Stagonospora nodorum[W][OA] , 2007, The Plant Cell Online.

[97]  James K. Hane,et al.  A first genome assembly of the barley fungal pathogen Pyrenophora teres f. teres , 2010, Genome Biology.

[98]  M. Duarte,et al.  The external alternative NAD(P)H dehydrogenase NDE3 is localized both in the mitochondria and in the cytoplasm of Neurospora crassa. , 2007, Journal of molecular biology.

[99]  Darren A. Natale,et al.  The COG database: an updated version includes eukaryotes , 2003, BMC Bioinformatics.

[100]  Michael P. Cummings,et al.  PAUP* [Phylogenetic Analysis Using Parsimony (and Other Methods)] , 2004 .

[101]  A. Sharon,et al.  Botrytis cinerea BcNma is involved in apoptotic cell death but not in stress adaptation. , 2011, Fungal genetics and biology : FG & B.

[102]  Bernard Henrissat,et al.  Périgord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis , 2010, Nature.

[103]  V. Siewers,et al.  Functional analysis of H(2)O(2)-generating systems in Botrytis cinerea: the major Cu-Zn-superoxide dismutase (BCSOD1) contributes to virulence on French bean, whereas a glucose oxidase (BCGOD1) is dispensable. , 2004, Molecular plant pathology.

[104]  K. Borkovich,et al.  Cellular and molecular biology of filamentous fungi , 2010 .

[105]  P. Marcianò,et al.  Enzymatic oxalate decarboxylation in isolates of Sclerotinia sclerotiorum , 1988 .

[106]  R. Poulter,et al.  The nuclear-encoded inteins of fungi. , 2007, Fungal genetics and biology : FG & B.

[107]  M. Dickman,et al.  Oxalic Acid, a Pathogenicity Factor for Sclerotinia sclerotiorum, Suppresses the Oxidative Burst of the Host Plant , 2000, Plant Cell.

[108]  Susumu Goto,et al.  KEGG for representation and analysis of molecular networks involving diseases and drugs , 2009, Nucleic Acids Res..

[109]  C. Levis,et al.  Botrytis cinerea virulence factors: new insights into a necrotrophic and polyphageous pathogen. , 2007, FEMS microbiology letters.

[110]  E. Woltering,et al.  Histochemical and genetic analysis of host and non-host interactions of Arabidopsis with three Botrytis species: an important role for cell death control. , 2007, Molecular plant pathology.

[111]  L. Kohn,et al.  New Populations of Sclerotinia sclerotiorum from Lettuce in California and Peas and Lentils in Washington. , 2007, Phytopathology.

[112]  Celedonio González,et al.  The Botrytis cinerea xylanase Xyn11A contributes to virulence with its necrotizing activity, not with its catalytic activity , 2010, BMC Plant Biology.

[113]  Sean R. Eddy,et al.  Profile hidden Markov models , 1998, Bioinform..

[114]  J. A. Oguiza,et al.  Comparative genomics of the oxidative phosphorylation system in fungi. , 2008, Fungal genetics and biology : FG & B.

[115]  A. Sharon,et al.  Fungal apoptosis: function, genes and gene function. , 2009, FEMS microbiology reviews.

[116]  D. Dunaway-Mariano,et al.  Oxaloacetate Hydrolase, the C–C Bond Lyase of Oxalate Secreting Fungi* , 2007, Journal of Biological Chemistry.

[117]  T. Clemente,et al.  Abrogation of disease development in plants expressing animal antiapoptotic genes , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[118]  B. Nelson,et al.  Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. , 2006, Molecular plant pathology.

[119]  A. Krogh,et al.  Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. , 2001, Journal of molecular biology.

[120]  J. Rollins,et al.  Deletion of the adenylate cyclase (sac1) gene affects multiple developmental pathways and pathogenicity in Sclerotinia sclerotiorum. , 2007, Fungal genetics and biology : FG & B.

[121]  S. Saupe,et al.  Fungal incompatibility: Evolutionary origin in pathogen defense? , 2009, BioEssays : news and reviews in molecular, cellular and developmental biology.

[122]  Narmada Thanki,et al.  CDD: specific functional annotation with the Conserved Domain Database , 2008, Nucleic Acids Res..

[123]  Thomas Schiex,et al.  Genome Annotation in Plants and Fungi: EuGene as a Model Platform , 2008 .

[124]  L. Lipovich,et al.  Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. , 2001, Genome research.

[125]  M. Berbee,et al.  Lateral transfer of mating system in Stemphylium. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[126]  Simon H. Martin,et al.  Structure and evolution of the Fusarium mating type locus : New insights from the Gibberella fujikuroi complex , 2011 .

[127]  Jaideep P. Sundaram,et al.  Genomic Islands in the Pathogenic Filamentous Fungus Aspergillus fumigatus , 2008, PLoS genetics.

[128]  J. Bennett,et al.  Fungal secondary metabolism — from biochemistry to genomics , 2005, Nature Reviews Microbiology.

[129]  M. Hahn,et al.  Living Colors in the Gray Mold Pathogen Botrytis cinerea: Codon-Optimized Genes Encoding Green Fluorescent Protein and mCherry, Which Exhibit Bright Fluorescence , 2011, Applied and Environmental Microbiology.

[130]  E. Shelest,et al.  Transcription factors in fungi. , 2008, FEMS microbiology letters.

[131]  Steven Salzberg,et al.  DAGchainer: a tool for mining segmental genome duplications and synteny , 2004, Bioinform..

[132]  Neil D Rawlings,et al.  The MEROPS batch BLAST: a tool to detect peptidases and their non-peptidase homologues in a genome. , 2008, Biochimie.

[133]  A. Driessen,et al.  Phylogenetic analysis of fungal ABC transporters , 2010, BMC Genomics.

[134]  R. D'Ovidio,et al.  Relationships among endo-polygalacturonase, oxalate, pH, and plant polygalacturonase-inhibiting protein (PGIP) in the interaction between Sclerotinia sclerotiorum and soybean. , 2004, Molecular plant-microbe interactions : MPMI.

[135]  Henry E. F. Garnsey,et al.  Comparative Morphology And Biology Of The Fungi, Mycetozoa And Bacteria , 1887 .

[136]  D. Choi,et al.  Evolution of ribosomal DNA-derived satellite repeat in tomato genome , 2009, BMC Plant Biology.

[137]  J. Carbon,et al.  Structure of the Chromosome VII Centromere Region in Neurospora crassa: Degenerate Transposons and Simple Repeats , 1998, Molecular and Cellular Biology.

[138]  B. Howlett,et al.  Secondary metabolism: regulation and role in fungal biology. , 2008, Current opinion in microbiology.

[139]  John P. Huelsenbeck,et al.  MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..

[140]  P. Solomon,et al.  New developments in pathogenicity and virulence of necrotrophs. , 2010, Current opinion in plant biology.

[141]  E. Mauceli,et al.  Whole-genome sequence assembly for mammalian genomes: Arachne 2. , 2003, Genome research.

[142]  Brian Williamson,et al.  The adenylate cyclase (BAC) in Botrytis cinerea is required for full pathogenicity. , 2002, Molecular plant pathology.

[143]  F. Marches,et al.  Boty, a long-terminal-repeat retroelement in the phytopathogenic fungus Botrytis cinerea , 1995, Applied and environmental microbiology.

[144]  M. P. Cummings,et al.  PAUP* Phylogenetic analysis using parsimony (*and other methods) Version 4 , 2000 .

[145]  S. Eddy,et al.  tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. , 1997, Nucleic acids research.

[146]  L. Ciuffetti,et al.  Host-selective toxins, Ptr ToxA and Ptr ToxB, as necrotrophic effectors in the Pyrenophora tritici-repentis-wheat interaction. , 2010, The New phytologist.

[147]  Y. Hayashi,et al.  Light microscopic observation of nuclei and mitotic chromosomes of Botrytis species. , 1989 .

[148]  M. Dickman,et al.  Oxalic acid is an elicitor of plant programmed cell death during Sclerotinia sclerotiorum disease development. , 2008, Molecular plant-microbe interactions : MPMI.

[149]  Zhao Xu,et al.  A fungal phylogeny based on 82 complete genomes using the composition vector method , 2009, BMC Evolutionary Biology.

[150]  Peter van Baarlen,et al.  Molecular phylogeny of the plant pathogenic genus Botrytis and the evolution of host specificity. , 2004, Molecular biology and evolution.

[151]  D. P. Wall,et al.  Detecting putative orthologs , 2003, Bioinform..

[152]  L. Fraissinet-Tachet,et al.  Molecular karyotype of the phytopathogenic fungusSclerotinia sclerotiorum , 1996, Current Genetics.

[153]  Brian Williamson,et al.  Botrytis cinerea: the cause of grey mould disease. , 2007, Molecular plant pathology.

[154]  D. Cane,et al.  Sesquiterpene synthase from the botrydial biosynthetic gene cluster of the phytopathogen Botrytis cinerea. , 2008, ACS chemical biology.

[155]  Casey M. Bergman,et al.  Combined Evidence Annotation of Transposable Elements in Genome Sequences , 2005, PLoS Comput. Biol..

[156]  F. Faretra,et al.  Sexual behaviour and mating system of Botryotinia fuckeliana, teleomorph of Botrytis cinerea. , 1988 .

[157]  C. Bochet,et al.  The ABC transporter BcatrB from Botrytis cinerea exports camalexin and is a virulence factor on Arabidopsis thaliana. , 2009, The Plant journal : for cell and molecular biology.

[158]  C. Stoeckert,et al.  OrthoMCL: identification of ortholog groups for eukaryotic genomes. , 2003, Genome research.