Feature classes for 1D, 2nd order image structure arise from natural image maximum likelihood statistics

Much is understood of how quantitative aspects of image structure are measured by V1 simple cells, but less about how qualitative structure is determined from these measurements. We review Geometric Texton Theory (GTT) that aims to describe this step from quantitative to qualitative. GTT proposes that qualitative feature categories arise through consideration of the maximum likelihood (ML) explanations of image measurements. It posits that a pair of output vectors of an ensemble of co-localised neurons signal the same feature category if and only if the corresponding ML explanations are qualitatively similar. We present mathematical and empirical results relevant to GTT for the limited case of measurement by 1D filters of up to 2nd order. The mathematical results identify the simplest explanations for measurements by such filters, while the empirical results identify the ML. We find that the ML explanations are not the most simple under any of the definitions of simple that we examined. However, the ML explanations do have properties predicted by GTT. In particular they change rapidly and qualitatively for certain narrow regions of measurement space, while remaining qualitative stable between those transition regions. Three feature categories arise naturally from the data: light bars, dark bars and edges. The results are consistent with GTT.

[1]  M. Georgeson,et al.  Perceived Location of Bars and Edges in One-dimensional Images: Computational Models and Human Vision , 1997, Vision Research.

[2]  Curtis R. Vogel,et al.  Ieee Transactions on Image Processing Fast, Robust Total Variation{based Reconstruction of Noisy, Blurred Images , 2022 .

[3]  Tony F. Chan,et al.  Total variation blind deconvolution , 1998, IEEE Trans. Image Process..

[4]  MalikJitendra,et al.  Representing and Recognizing the Visual Appearance of Materials using Three-dimensional Textons , 2001 .

[5]  William H. Press,et al.  Numerical Recipes in C, 2nd Edition , 1992 .

[6]  Deliang Wang,et al.  A spectral histogram model for texton modeling and texture discrimination , 2002, Vision Research.

[7]  William H. Press,et al.  Numerical recipes in C (2nd ed.): the art of scientific computing , 1992 .

[8]  Gerald Sommer,et al.  Algebraic Frames for the Perception-Action Cycle , 2000, Lecture Notes in Computer Science.

[9]  R A Young,et al.  The Gaussian derivative model for spatial vision: I. Retinal mechanisms. , 1988, Spatial vision.

[10]  J. Koenderink Operational significance of receptive field assemblies , 1988, Biological Cybernetics.

[11]  B. Julesz A brief outline of the texton theory of human vision , 1984, Trends in Neurosciences.

[12]  Erwin Schrödinger,et al.  Theorie der Pigmente von größter Leuchtkraft , 1920 .

[13]  Jean-Bernard Martens,et al.  Local orientation analysis in images by means of the Hermite transform , 1997, IEEE Trans. Image Process..

[14]  Jan J. Koenderink,et al.  Algebraic Frames for the Perception-Action Cycle , 1997, Lecture Notes in Computer Science.

[15]  Alfred M. Bruckstein,et al.  Regularized Laplacian Zero Crossings as Optimal Edge Integrators , 2003, International Journal of Computer Vision.

[16]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[17]  H. Barlow Summation and inhibition in the frog's retina , 1953, The Journal of physiology.

[18]  Joost van de Weijer,et al.  Least Squares and Robust Estimation of Local Image Structure , 2003, International Journal of Computer Vision.

[19]  Max A. Viergever,et al.  Families of Tuned Scale-Space Kernels , 1992, ECCV.

[20]  Mads Nielsen,et al.  Feature-Based Image Analysis , 2003, International Journal of Computer Vision.

[21]  Joost van de Weijer,et al.  Least Squares and Robust Estimation of Local Image Structure , 2003, Scale-Space.

[22]  William H. Press,et al.  Numerical recipes , 1990 .

[23]  Lewis D. Griffin,et al.  Features in Scale Space: Progress on the 2D 2nd Order Jet , 2001, Scale-Space.

[24]  Lewis D. Griffin Local image structure, metamerism, norms and natural image statistics , 2002 .

[25]  Benoit Mory,et al.  Scale-Space Image Analysis Based on Hermite Polynomials Theory , 2003, International Journal of Computer Vision.

[26]  William H. Press,et al.  Numerical recipes in C , 2002 .

[27]  Jitendra Malik,et al.  Representing and Recognizing the Visual Appearance of Materials using Three-dimensional Textons , 2001, International Journal of Computer Vision.

[28]  D. Ruderman,et al.  INDEPENDENT COMPONENT ANALYSIS OF NATURAL IMAGE SEQUENCES YIELDS SPATIOTEMPORAL FILTERS SIMILAR TO SIMPLE CELLS IN PRIMARY VISUAL CORTEX , 1998 .

[29]  Andrea J. van Doorn,et al.  Local structure of gaussian texture , 2003 .

[30]  Lewis D. Griffin,et al.  Mode estimation by pessimistic scale space tracking , 2003 .

[31]  Kim Steenstrup Pedersen,et al.  Statistics of Natural Image Geometry , 2003 .

[32]  Andrea J. van Doorn,et al.  Generic Neighborhood Operators , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  Ronald M. Lesperance,et al.  The Gaussian derivative model for spatial-temporal vision: II. Cortical data. , 2001, Spatial vision.

[34]  Andrea J. van Doorn,et al.  Local Image Operators and Iconic Structure , 1997, AFPAC.

[35]  Lewis D. Griffin,et al.  Natural image profiles are most likely to be step edges , 2004, Vision Research.

[36]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[37]  Andrea J. van Doorn,et al.  Receptive field assembly pattern specificity , 1992, J. Vis. Commun. Image Represent..

[38]  Jan J. Koenderink,et al.  What is a "Feature"? , 1993 .

[39]  Lewis D. Griffin,et al.  Mode Estimation Using Pessimistic Scale Space Tracking , 2003, Scale-Space.

[40]  WeijerJoost Van,et al.  Least Squares and Robust Estimation of Local Image Structure , 2005 .

[41]  Mark A. Georgeson,et al.  The primal sketch revisited: locating and representing edges in human vision via Gaussian-derivative filtering , 2002 .

[42]  Refractor Vision , 2000, The Lancet.

[43]  L. Debnath,et al.  On Hermite transform , 1964 .

[44]  Song-Chun Zhu,et al.  What are Textons? , 2005, Int. J. Comput. Vis..

[45]  Kim Steenstrup Pedersen,et al.  The Nonlinear Statistics of High-Contrast Patches in Natural Images , 2003, International Journal of Computer Vision.

[46]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[47]  D. Ruderman,et al.  Independent component analysis of natural image sequences yields spatio-temporal filters similar to simple cells in primary visual cortex , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[48]  J. Koenderink,et al.  Receptive field families , 1990, Biological Cybernetics.

[49]  J. Koenderink,et al.  Representation of local geometry in the visual system , 1987, Biological Cybernetics.

[50]  Ronald M. Lesperance,et al.  The Gaussian derivative model for spatial-temporal vision: I. Cortical model. , 2001, Spatial vision.

[51]  J. Koenderink The structure of images , 2004, Biological Cybernetics.