VLBI study of maser kinematics in high-mass star-forming regions - II. G23.01–0.41

Aims. We performed a detailed study of maser and radio continuum emission toward the high-mass star-forming region G23.01-0.41. This study aims at improving our knowledge of the high-mass star-forming process by comparing the gas kinematics near a newly born young stellar object (YSO), analyzed through high spatial resolution maser data, with the large-scale environment of its native hot molecular core (HMC), identified in previous interferometric observations of thermal continuum and molecular lines. Methods. Using the VLBA and the EVN arrays, we conducted phase-referenced observations of the three most powerful maser species in G23.01-0.41: H 2 O at 22.2 GHz (4 epochs), CH 3 OH at 6.7 GHz (3 epochs), and OH at 1.665 GHz (1 epoch). In addition, we performed high-resolution (≥0".1), high-sensitivity (<0.1 mJy) VLA observations of the radio continuum emission from the HMC at 1.3 and 3.6 cm. Results. We have detected H 2 O, CH 3 0H, and OH maser emission clustered within 2000 AU from the center of a flattened HMC, oriented SE-NW, from which emerges a massive 12 CO outflow, elongated NE-SW, extended up to the pc-scale. Although the three maser species show a clearly different spatial and velocity distribution and sample distinct environments around the massive YSO, the spatial symmetry and velocity field of each maser specie can be explained in terms of expansion from a common center, which possibly denotes the position of the YSO driving the maser motion. Water masers trace both a fast shock (up to 50 km s ―1 ) closer to the YSO, powered by a wide-angle wind, and a slower (20 km s ―1 ) bipolar jet, at the base of the large-scale outflow. Because the compact free-free emission is found offset from the putative location of the YSO along a direction consistent with that of the maser jet axis, we interpret the radio continuum in terms of a thermal jet. The velocity field of methanol masers can be explained in terms of a composition of slow (4 km s ―1 in amplitude) motions of radial expansion and rotation about an axis approximately parallel to the maser jet. Finally, the distribution of line-of-sight velocities of the hydroxyl masers suggests that they can trace gas less dense (n H2 ≤ 10 6 cm ―3 ) and more distant from the YSO than that traced by the water and methanol masers, which is expanding toward the observer. A few pairs of OH masers, with different circular polarization, are well aligned in position on the sky and we interpret them as Zeeman pairs. From Zeeman splitting, the derived typical values of the magnetic field are of a few mG.

[1]  R. Cesaroni,et al.  VLBI study of maser kinematics in high-mass SFRs. I. G16.59-0.05 , 2010, 1004.2479.

[2]  Astronomy,et al.  The diversity of methanol maser morphologies from VLBI observations , 2009, 0905.3469.

[3]  N. Marcelino,et al.  Molecular outflows towards O-type young stellar objects , 2009, 0905.0548.

[4]  G. A. Moellenbrock,et al.  TRIGONOMETRIC PARALLAXES OF MASSIVE STAR-FORMING REGIONS. VI. GALACTIC STRUCTURE, FUNDAMENTAL PARAMETERS, AND NONCIRCULAR MOTIONS , 2009, 0902.3913.

[5]  K. Menten,et al.  TRIGONOMETRIC PARALLAXES OF MASSIVE STAR-FORMING REGIONS. V. G23.01−0.41 AND G23.44−0.18 , 2008, 0811.0713.

[6]  K. Menten,et al.  TRIGONOMETRIC PARALLAXES OF MASSIVE STAR-FORMING REGIONS. I. S 252 & G232.6+1.0 , 2008, 0811.0595.

[7]  W. Goss,et al.  A Search for H2CO 6 cm Emission toward Young Stellar Objects. III. VLA Observations , 2008, 0806.1548.

[8]  W. Vlemmings A new probe of magnetic fields during high-mass star formation Zeeman splitting of 6.7 GHz methanol masers , 2008, 0804.1141.

[9]  S. Molinari,et al.  The evolution of the spectral energy distribution in massive young stellar objects , 2008 .

[10]  U. Manchester,et al.  The Circumstellar Environment of High-Mass Protostellar Objects. IV. C 17 O Observations and Depletion , 2007, 0712.1512.

[11]  R. Cesaroni,et al.  Candidate Rotating Toroids around High-Mass (Proto)Stars , 2007, 0710.0029.

[12]  R. Xue,et al.  Signatures of Inflow Motion in Cores of Massive Star Formation: Potential Collapse Candidates , 2007, 0710.2399.

[13]  R. Cesaroni,et al.  Massive star-formation in G24.78+0.08 explored through VLBI maser observations , 2007 .

[14]  M. Reid,et al.  THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 10/09/06 PROPER MOTIONS OF OH MASERS AND MAGNETIC FIELDS IN MASSIVE STAR-FORMING REGIONS , 2007 .

[15]  H. Zinnecker,et al.  Toward Understanding Massive Star Formation , 2007, 0707.1279.

[16]  K. Menten,et al.  Methanol as a diagnostic tool of interstellar clouds - II. Modelling high-mass protostellar objects , 2007 .

[17]  J. Martí,et al.  Sub-arcsecond resolution radio continuum observations of IRAS 20126+4104 , 2007 .

[18]  G. Fuller,et al.  A survey of OH masers towards high mass protostellar objects , 2007, astro-ph/0701652.

[19]  K. Keil,et al.  Protostars and Planets V , 2007 .

[20]  R. Cesaroni,et al.  Associations of water and methanol masers at milli-arcsec angular resolution in two high-mass youn , 2006, astro-ph/0610482.

[21]  H. Beuther,et al.  The high-mass star-forming region IRAS 18182 1433 , 2006, astro-ph/0603814.

[22]  P. Charlot,et al.  Astrometric accuracy of phase-referenced observations with the vlba and evn , 2006, astro-ph/0603015.

[23]  R. Cesaroni,et al.  Evidence supporting the kinematic interpretation of water maser proper motions , 2006 .

[24]  M. Reid,et al.  Full-Polarization Observations of OH Masers in Massive Star-forming Regions. II. Maser Properties and the Interpretation of Polarization , 2006, astro-ph/0601560.

[25]  P. Caselli,et al.  Cores to Clusters: Star Formation with Next Generation Telescopes , 2005 .

[26]  Qizhou Zhang,et al.  In Search of Circumstellar Disks around Young Massive Stars , 2005, astro-ph/0510761.

[27]  P. Schilke,et al.  High-Mass Starless Cores , 2005, astro-ph/0508421.

[28]  G. Fuller,et al.  The circumstellar environment of high mass protostellar objects. III. Evidence of infall , 2005, astro-ph/0508098.

[29]  V. Minier,et al.  Millimetre continuum observations of southern massive star formation regions. I. SIMBA observations of cold cores , 2005, astro-ph/0506402.

[30]  Munchen,et al.  Bright OB stars in the Galaxy II. Wind variability in O supergiants as traced by Hα , 2005, astro-ph/0505613.

[31]  K. Menten,et al.  Masers as signposts of high-mass protostars A water maser survey of methanol maser sources , 2005 .

[32]  P. Godfrey,et al.  Models of class II methanol masers based on improved molecular data , 2005, astro-ph/0504194.

[33]  G. Fuller,et al.  The circumstellar environments of high-mass protostellar objects. II. Dust continuum models , 2005 .

[34]  C. Telesco,et al.  Observations of Massive Star-Forming Regions with Water Masers: Mid-Infrared Imaging , 2004, astro-ph/0410630.

[35]  D. Walt,et al.  Long-term monitoring of 6.7-GHz methanol masers , 2004 .

[36]  G. Garay,et al.  SIMBA survey of southern high-mass star forming regions. I. Physical parameters of the 1.2-mm/IRAS sources , 2004 .

[37]  T. K. Sridharan,et al.  The circumstellar environments of high-mass protostellar objects , 2004, Astronomy &amp; Astrophysics.

[38]  É. Gérard,et al.  Observations of hydroxyl ground state transitions in a complete sample of methanol sources , 2004 .

[39]  A. Kus,et al.  12.2 GHz survey towards 6.7 GHz methanol masers. A comparison of 12.2 GHz and 6.7 GHz spectra , 2004 .

[40]  G. Garay,et al.  Evidence for Evolution of the Outflow Collimation in Very Young Stellar Objects , 2003 .

[41]  D. MacMillan,et al.  The Second VLBA Calibrator Survey: VCS2 , 2003 .

[42]  Michael G. Burton,et al.  Observations of warm dust near methanol masers , 2003 .

[43]  A High Spectral Resolution VLBI Study of the 12 GHz Methanol Masers in W3(OH): Their Submilliarcsecond Structure and Clues on Saturation , 2003 .

[44]  J. Buizer Testing the circumstellar disc hypothesis: a search for H2 outflow signatures from massive young stellar objects with linearly distributed methanol masers , 2003, astro-ph/0301445.

[45]  K. Menten,et al.  CH3OH and H2O masers in high-mass star-forming regions , 2002, astro-ph/0205348.

[46]  P. Godfrey,et al.  Modelling methanol and hydroxyl masers in star-forming regions , 2002 .

[47]  J. Conway,et al.  VLBI observations of 6.7 and 12.2 GHz methanol masers toward high mass star-forming regions - III. The milliarcsecond structures of masing regions , 2002 .

[48]  T. K. Sridharan,et al.  High-Mass Proto-Stellar Candidates - II : Density structure from dust continuum and CS emission , 2001, astro-ph/0110370.

[49]  K. Menten,et al.  Massive molecular outflows , 2001, astro-ph/0112508.

[50]  K. Menten,et al.  High-Mass Protostellar Candidates. I. The Sample and Initial Results , 2001, astro-ph/0110363.

[51]  J. Caswell,et al.  Methanol masers at 107.0 and 156.6 GHz , 2000 .

[52]  A. Kus,et al.  A survey of the 6.7 GHz methanol maser emission from IRAS sources - I. Data , 2000 .

[53]  V. Slysh,et al.  Detection of new sources of methanol emission at 95 GHz with the Mopra telescope , 2000, astro-ph/0003207.

[54]  James R. Forster,et al.  Radio Continuum Emission at OH and H2O Maser Sites , 2000 .

[55]  A. Boss,et al.  Protostars and Planets VI , 2000 .

[56]  I. Val’tts,et al.  Survey of bipolar outflows and methanol masers in the C32S ($2-1)$ and C34S (2-1) lines in the Northern sky , 1999 .

[57]  V. Slysh,et al.  Nonequilibrium Excitation of Methanol in Galactic Molecular Clouds: Multitransitional Observations at 2 Millimeters , 1999, astro-ph/9906090.

[58]  J. Caswell,et al.  OH AND H2O MASERS IN 74 STAR-FORMING REGIONS : THE FC89 DATABASE , 1999 .

[59]  Garry Robinson,et al.  Studies of ultracompact H ii regions — II. High-resolution radio continuum and methanol maser survey , 1998 .

[60]  I. Zinchenko,et al.  A SURVEY OF SIO EMISSION TOWARDS INTERSTELLAR MASERS . I. SIO LINE CHARACTERISTICS , 1998 .

[61]  R. Norris,et al.  Methanol Masers as Tracers of Circumstellar Disks , 1998, astro-ph/9806284.

[62]  T. K. Sridharan,et al.  The Circumstellar Environments of High Mass Protostellar Objects , 1997 .

[63]  G. Anglada,et al.  A CS and NH 3 Survey of Regions with H 2 O Maser Emission , 1996 .

[64]  M. Kaufman,et al.  Water Maser Emission from Magnetohydrodynamic Shock Waves , 1996 .

[65]  Ray P. Norris,et al.  Galactic methanol masers at 6.6 GHz , 1995 .

[66]  A. Taylor,et al.  Radio emission from the stars and the sun , 1995 .

[67]  V. Slysh,et al.  The Parkes survey of methanol masers at 44.07 GHz , 1994 .

[68]  R. Norris,et al.  Methanol masers at 12 GHz. , 1993 .

[69]  M. Reid,et al.  Distance and Kinematics of the W49N H 2O Maser Outflow , 1992 .

[70]  Karl M. Menten,et al.  The discovery of a new, very strong, and widespread interstellar methanol maser line , 1991 .

[71]  D. Hollenbach,et al.  H2O masers in star-forming regions , 1989 .

[72]  M. Reid,et al.  The distance to the center of the Galaxy , 1987 .

[73]  K. J. Wellington,et al.  New H2O masers associated with main-line OH masers in the galactic longitude range 3° to 60° , 1983 .

[74]  J. Caswell,et al.  Atlas of Main-line OH Masers in the Galactic Longitude Range 3° to 60° , 1983 .

[75]  N. Panagia,et al.  Some physical parameters of early-type stars , 1973 .

[76]  P. Mezger,et al.  Galactic H II Regions.IV. 1.95-CM Observations with High Angular Resolution and High Positional Accuracy , 1969 .