Improving the Search by Encoding Multiple Solutions in a Chromosome

We investigate the possibility of encoding multiple solutions of a problem in a single chromosome. The best solution encoded in an individual will represent (will provide the fitness of) that individual. In order to obtain some benefits the chromosome decoding process must have the same complexity as in the case of a single solution in a chromosome. Three Genetic Programming techniques are analyzed for this purpose: Multi Expression Programming, Linear Genetic Programming and Infix Form Genetic Programming. Numerical experiments show that encoding multiple solutions in a chromosome greatly improves the search process.

[1]  Sean Luke,et al.  Fighting Bloat with Nonparametric Parsimony Pressure , 2002, PPSN.

[2]  P. Schrimpf,et al.  Dynamic Programming , 2011 .

[3]  John R. Koza Genetic Programming III - Darwinian Invention and Problem Solving , 1999, Evolutionary Computation.

[4]  Gilbert Syswerda,et al.  Uniform Crossover in Genetic Algorithms , 1989, ICGA.

[5]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[6]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[7]  D. Wolpert,et al.  No Free Lunch Theorems for Search , 1995 .

[8]  Michael O'Neill,et al.  Grammatical Evolution: Evolving Programs for an Arbitrary Language , 1998, EuroGP.

[9]  Mihai Oltean,et al.  Evolving Evolutionary Algorithms Using Multi Expression Programming , 2003, ECAL.

[10]  Alfred V. Aho,et al.  Compilers: Principles, Techniques, and Tools , 1986, Addison-Wesley series in computer science / World student series edition.

[11]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[12]  Riccardo Poli,et al.  Genetic Programming Bloat with Dynamic Fitness , 1998, EuroGP.

[13]  Mihai Oltean,et al.  Solving Classification Problems Using Infix Form Genetic Programming , 2003, IDA.

[14]  Xin-She Yang,et al.  Introduction to Algorithms , 2021, Nature-Inspired Optimization Algorithms.

[15]  Wolfgang Banzhaf,et al.  A comparison of linear genetic programming and neural networks in medical data mining , 2001, IEEE Trans. Evol. Comput..

[16]  Peter Nordin,et al.  A compiling genetic programming system that directly manipulates the machine-code , 1994 .

[17]  Una-May O'Reilly,et al.  Genetic Programming II: Automatic Discovery of Reusable Programs. , 1994, Artificial Life.

[18]  Wolfgang Banzhaf,et al.  Explicit Control of Diversity and Effective Variation Distance in Linear Genetic Programming , 2002, EuroGP.

[19]  Wolfgang Banzhaf,et al.  Evolving Teams of Predictors with Linear Genetic Programming , 2001, Genetic Programming and Evolvable Machines.

[20]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[21]  William B. Langdon,et al.  Some Considerations on the Reason for Bloat , 2002, Genetic Programming and Evolvable Machines.

[22]  Alex A. Freitas,et al.  Evolutionary Computation , 2002 .

[23]  J. David Schaffer,et al.  Proceedings of the third international conference on Genetic algorithms , 1989 .

[24]  Mihai Oltean Solving Even-Parity Problems using Multi Expression Programming , 2003 .