Solitons, Breathers, and Lump Solutions to the (2 + 1)-Dimensional Generalized Calogero-Bogoyavlenskii-Schiff Equation

[1]  Wen Zhang,et al.  Evolutionary behavior of breathers and interaction solutions with M-solitons for (2+1)-dimensional KdV system , 2020, Appl. Math. Lett..

[2]  Na Liu,et al.  New multi-soliton solutions of a (3+1)-dimensional nonlinear evolution equation , 2016, Comput. Math. Appl..

[3]  Xu Dan-Hong,et al.  Dark soliton molecules in nonlinear optics , 2020 .

[4]  B. Guo,et al.  Long-time asymptotics of the focusing Kundu–Eckhaus equation with nonzero boundary conditions , 2019, Journal of Differential Equations.

[5]  Wenxiu Ma,et al.  Bilinear Equations and Resonant Solutions Characterized by Bell Polynomials , 2013 .

[6]  Qing Guan,et al.  Binary Bell polynomials, Hirota bilinear approach to Levi equation , 2017, Appl. Math. Comput..

[7]  Md. Belal Hossen,et al.  Characteristics of the solitary waves and rogue waves with interaction phenomena in a (2 + 1)-dimensional Breaking Soliton equation , 2018 .

[8]  Wen-Xiu Ma,et al.  Lump solutions of a generalized Calogero-Bogoyavlenskii-Schiff equation , 2018, Comput. Math. Appl..

[9]  L. Wazzan,et al.  A modified tanh-coth method for solving the KdV and the KdV-Burgers' equations , 2009 .

[10]  M. S. Ullah,et al.  Dynamical structures of multi-soliton solutions to the Bogoyavlenskii’s breaking soliton equations , 2020 .

[11]  J. Schiff Integrability of Chern-Simons-Higgs Vortex Equations and a Reduction of the Self-Dual Yang-Mills Equations to Three Dimensions , 1992 .

[12]  Manwai Yuen,et al.  Soliton molecules and mixed solutions of the (2+1)-dimensional bidirectional Sawada–Kotera equation , 2020, Communications in Theoretical Physics.

[13]  Y. B. Chukkol,et al.  Exact solutions to the KDV-Burgers equation with forcing term using Tanh-Coth method , 2017 .

[14]  Hongcai Ma,et al.  Multiple lump solutions of the (2+1)‐dimensional Konopelchenko–Dubrovsky equation , 2020, Mathematical Methods in the Applied Sciences.

[15]  O I Bogoyavlenskiĭ,et al.  OVERTURNING SOLITONS IN NEW TWO-DIMENSIONAL INTEGRABLE EQUATIONS , 1990 .

[16]  Abdul-Majid Wazwaz,et al.  The Hirota's bilinear method and the tanh-coth method for multiple-soliton solutions of the Sawada-Kotera-Kadomtsev-Petviashvili equation , 2008, Appl. Math. Comput..

[17]  Zhenyun Qin,et al.  Localized modes of the Hirota equation: Nth order rogue wave and a separation of variable technique , 2016, Commun. Nonlinear Sci. Numer. Simul..

[18]  Biao Li,et al.  Soliton molecules and novel smooth positons for the complex modified KdV equation , 2020, Appl. Math. Lett..

[19]  Wen-Xiu Ma,et al.  Lump solutions to nonlinear partial differential equations via Hirota bilinear forms , 2016, 1607.06983.

[20]  Shou-Fu Tian,et al.  On periodic wave solutions with asymptotic behaviors to a (3+1)-dimensional generalized B-type Kadomtsev-Petviashvili equation in fluid dynamics , 2016, Comput. Math. Appl..

[21]  Yongkuan Cheng,et al.  Soliton solutions to a class of relativistic nonlinear Schrödinger equations , 2015, Appl. Math. Comput..

[22]  Li Zou,et al.  Solitary waves, homoclinic breather waves and rogue waves of the (3+1)-dimensional Hirota bilinear equation , 2017, Comput. Math. Appl..

[23]  H. An,et al.  Non-traveling lump solutions and mixed lump–kink solutions to (2+1)-dimensional variable-coefficient Caudrey–Dodd–Gibbon–Kotera–Sawada equation , 2019, Modern Physics Letters B.

[24]  Lei Liu,et al.  Wronskian and Grammian solutions for a (2+1) - dimensional Date-Jimbo-Kashiwara-Miwa equation , 2017, Comput. Math. Appl..

[25]  Qian Zhao,et al.  Darboux transformation and explicit solutions to the generalized TD equation , 2017, Appl. Math. Lett..

[26]  Yuan Zhou,et al.  Lump and lump-soliton solutions to the Hirota-Satsuma-Ito equation , 2019, Commun. Nonlinear Sci. Numer. Simul..

[27]  Harun-Or-Roshid,et al.  Dynamics of mixed lump-solitary waves of an extended (2 + 1)-dimensional shallow water wave model , 2018, Physics Letters A.

[28]  Hong-Cai Ma,et al.  New Periodic Wave, Cross-Kink Wave, Breather, and the Interaction Phenomenon for the (2 + 1)-Dimensional Sharmo-Tasso-Olver Equation , 2020, Complex..

[29]  Shou-Fu Tian,et al.  On breather waves, rogue waves and solitary waves to a generalized (2+1)-dimensional Camassa-Holm-Kadomtsev-Petviashvili equation , 2018, Commun. Nonlinear Sci. Numer. Simul..

[30]  H. C. Hu,et al.  New positon, negaton and complexiton solutions for the Hirota–Satsuma coupled KdV system , 2008 .

[31]  Xiao-Yong Wen,et al.  The N-soliton solution and localized wave interaction solutions of the (2+1)-dimensional generalized Hirota-Satsuma-Ito equation , 2019, Comput. Math. Appl..

[32]  Zhengde Dai,et al.  Exact soliton solutions for the fifth-order Sawada-Kotera equation , 2008, Appl. Math. Comput..

[33]  Abdul-Majid Wazwaz,et al.  The (2+1) and (3+1)-Dimensional CBS Equations: Multiple Soliton Solutions and Multiple Singular Soliton Solutions , 2010 .

[34]  B. Tian,et al.  Lump wave-soliton and rogue wave-soliton interactions for a (3+1)-dimensional B-type Kadomtsev–Petviashvili equation in a fluid , 2018, Chinese Journal of Physics.

[35]  Ning Zhang,et al.  Re-observation on localized waves constructed by variable separation solutions of (1+1)-dimensional coupled integrable dispersionless equations via the projective Riccati equation method , 2019, Appl. Math. Lett..

[36]  広田 良吾,et al.  The direct method in soliton theory , 2004 .

[37]  Bernard Deconinck,et al.  Numerical computation of the finite-genus solutions of the Korteweg-de Vries equation via Riemann-Hilbert problems , 2013, Appl. Math. Lett..

[38]  Abdul-Majid Wazwaz,et al.  Multiple soliton solutions for the (2+1)-dimensional asymmetric Nizhnik–Novikov–Veselov equation , 2010 .

[39]  Wenxiu Ma,et al.  Lump Solutions to a (2+1)-Dimensional Fifth-Order KdV-Like Equation , 2018, Advances in Mathematical Physics.

[40]  Bo Tian,et al.  Dark breather waves, dark lump waves and lump wave-soliton interactions for a (3+1)-dimensional generalized Kadomtsev-Petviashvili equation in a fluid , 2019, Comput. Math. Appl..

[41]  Ji Lin,et al.  Interaction solutions between lump and stripe soliton to the (2+1)-dimensional Date–Jimbo–Kashiwara–Miwa equation , 2019, Nonlinear Dynamics.

[42]  Jian-Ping Yu,et al.  Lump solutions to dimensionally reduced Kadomtsev–Petviashvili-like equations , 2017 .

[43]  Wen-Xiu Ma,et al.  Bäcklund transformation, multiple wave solutions and lump solutions to a (3 + 1)-dimensional nonlinear evolution equation , 2017, Nonlinear Dynamics.

[44]  A. Wazwaz,et al.  Lump, multi-lump, cross kinky-lump and manifold periodic-soliton solutions for the (2+1)-D Calogero–Bogoyavlenskii–Schiff equation , 2020, Heliyon.

[45]  X. Geng,et al.  A new nonlinear wave equation: Darboux transformation and soliton solutions , 2018, Wave Motion.

[46]  Zhi-qiang Li,et al.  The lump, lumpoff and rouge wave solutions of a (3+1)-dimensional generalized shallow water wave equation , 2019, Modern Physics Letters B.

[47]  Hui Wang,et al.  Lump-type solution, rogue wave, fusion and fission phenomena for the (2+1)-dimensional Caudrey–Dodd–Gibbon–Kotera–Sawada equation , 2019, Modern Physics Letters B.

[48]  W. Tan Evolution of breathers and interaction between high-order lump solutions and N-solitons (N → ∞) for Breaking Soliton system , 2019, Physics Letters A.

[50]  Yong Chen,et al.  Rogue wave and a pair of resonance stripe solitons to KP equation , 2018, Comput. Math. Appl..

[51]  Abdul-Majid Wazwaz,et al.  Single and multiple-soliton solutions for the (2+1)-dimensional KdV equation , 2008, Appl. Math. Comput..

[52]  Hon-Wah Tam,et al.  A vector asymmetrical NNV equation: Soliton solutions, bilinear Bäcklund transformation and Lax pair , 2008 .

[53]  Yan Zhang,et al.  Darboux transformation and explicit solutions for 2+1-dimensional nonlocal Schrödinger equation , 2019, Appl. Math. Lett..

[54]  Q. Cheng,et al.  Soliton molecules and some novel hybrid solutions for the (2+1)-dimensional generalized Konopelchenko–Dubrovsky–Kaup–Kupershmidt equation , 2020, Communications in Theoretical Physics.

[55]  Xiao-Yong Wen,et al.  Novel interaction phenomena of localized waves in the generalized (3+1)-dimensional KP equation , 2019, Comput. Math. Appl..

[56]  Yong Chen,et al.  N-solitons, breathers, lumps and rogue wave solutions to a (3+1)-dimensional nonlinear evolution equation , 2018, Comput. Math. Appl..

[57]  W. Ma Generalized Bilinear Differential Equations , 2012 .