Wavelet directional histograms for classification of human gestures represented by spatio-temporal templates

This paper evaluates the efficacy of directional information of wavelet multi-resolution decomposition for histogram-based classification of human gestures represented by spatio-temporal templates. This template collapses temporal component into gesture representation in a way that no explicit sequence matching or temporal analysis is needed, and characterizes the motion from a very high dimensional space to a low dimensional space. These templates are modified to be invariant to translation, rotation and scale. Two dimensional, 3 level dyadic wavelet transform applied on these templates results in one low pass subimage and nine highpass directional subimages. Histograms of wavelet coefficients at different scales are compared to establish significance of available information for classification. The preliminary experiments show that while the statistical properties of the template provide high level of classification accuracy, the available information in high pass or low pass decompositions by itself is not sufficient to provide significant efficiency of accuracy.

[1]  Thomas B. Moeslund,et al.  A Survey of Computer Vision-Based Human Motion Capture , 2001, Comput. Vis. Image Underst..

[2]  Michel Beaudouin-Lafon,et al.  Charade: remote control of objects using free-hand gestures , 1993, CACM.

[3]  Stéphane Mallat,et al.  Wavelets for a vision , 1996, Proc. IEEE.

[4]  G. Johansson Visual perception of biological motion and a model for its analysis , 1973 .

[5]  Sethuraman Panchanathan,et al.  Illumination invariant image indexing using moments and wavelets , 1998, J. Electronic Imaging.

[6]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  D. Kumar,et al.  Representation and Classification of Human Movement Using Temporal Templates and Statistical Measure of Similarity , 2022 .

[8]  Majid Ahmadi,et al.  Pattern recognition with moment invariants: A comparative study and new results , 1991, Pattern Recognit..

[9]  James W. Davis,et al.  The Recognition of Human Movement Using Temporal Templates , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Mubarak Shah,et al.  Visual gesture recognition , 1994 .

[11]  Alex Pentland,et al.  Facial expression recognition using a dynamic model and motion energy , 1995, Proceedings of IEEE International Conference on Computer Vision.

[12]  David Zeltzer,et al.  A survey of glove-based input , 1994, IEEE Computer Graphics and Applications.

[13]  Richard J. Prokop,et al.  A survey of moment-based techniques for unoccluded object representation and recognition , 1992, CVGIP Graph. Model. Image Process..

[14]  S. Panchanathan,et al.  Image Indexing Using Moments and Wavelets , 1996, 1996. Digest of Technical Papers., International Conference on Consumer Electronics.

[15]  Anil K. Jain,et al.  Object Matching Using Deformable Templates , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Mubarak Shah,et al.  Motion-based recognition a survey , 1995, Image Vis. Comput..

[17]  Collin Wang,et al.  A virtual end-effector pointing system in point-and-direct robotics for inspection of surface flaws using a neural network based skeleton transform , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[18]  Roberto Cipolla,et al.  Robust structure from motion using motion parallax , 1993, 1993 (4th) International Conference on Computer Vision.

[19]  G. Johansson Visual motion perception. , 1975, Scientific American.

[20]  Markus A. Stricker,et al.  Similarity of color images , 1995, Electronic Imaging.

[21]  D. L. Quam,et al.  Gesture recognition with a DataGlove , 1990, IEEE Conference on Aerospace and Electronics.

[22]  Ming-Kuei Hu,et al.  Visual pattern recognition by moment invariants , 1962, IRE Trans. Inf. Theory.

[23]  James W. Davis Representing and Recognizing Human Motion : From Motion Templates to Movement Categories , 2001 .

[24]  Alireza Khotanzad,et al.  Invariant Image Recognition by Zernike Moments , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  R. Mukundan,et al.  Moment Functions in Image Analysis: Theory and Applications , 1998 .

[26]  Jake K. Aggarwal,et al.  Human Motion Analysis: A Review , 1999, Comput. Vis. Image Underst..

[27]  Michael J. Black,et al.  Tracking and recognizing rigid and non-rigid facial motions using local parametric models of image motion , 1995, Proceedings of IEEE International Conference on Computer Vision.

[28]  Isaac Weiss,et al.  Geometric invariants and object recognition , 1993, International Journal of Computer 11263on.

[29]  Michael J. Swain,et al.  Color indexing , 1991, International Journal of Computer Vision.

[30]  J. Little,et al.  Describing motion for recognition , 1995, Proceedings of International Symposium on Computer Vision - ISCV.

[31]  M. Bodruzzaman,et al.  Feature extraction using wavelet transform for neural network based image classification , 1998, Proceedings of Thirtieth Southeastern Symposium on System Theory.

[32]  R. Nelson,et al.  Low level recognition of human motion (or how to get your man without finding his body parts) , 1994, Proceedings of 1994 IEEE Workshop on Motion of Non-rigid and Articulated Objects.

[33]  Geoffrey E. Hinton,et al.  Glove-Talk: a neural network interface between a data-glove and a speech synthesizer , 1993, IEEE Trans. Neural Networks.

[34]  Stanley M. Dunn,et al.  Learning Shape Classes , 1994, IEEE Trans. Pattern Anal. Mach. Intell..