Spectral theory of two-dimensional periodic operators and its applications

CONTENTS Introduction Chapter I. The spectral theory of the non-stationary Schrodinger operator § 1. The perturbation theory for formal Bloch solutions § 2. The structure of the Riemann surface of Bloch functions § 3. The approximation theorem § 4. The spectral theory of finite-gap non-stationary Schrodinger operators § 5. The completeness theorem for products of Bloch functions Chapter II. The periodic problem for equations of Kadomtsev-Petviashvili type § 1. Necessary information on finite-gap solutions § 2. The perturbation theory for finite-gap solutions of the Kadomtsev-Petviashvili –2 equation § 3. Whitham equations for space two-dimensional "integrable systems" § 4. The construction of exact solutions of Whitham equations § 5. The quasi-classical limit of two-dimensional integrable equations. The Khokhlov-Zabolotskaya equationChapter III. The spectral theory of the two-dimensional periodic Schrodinger operator for one energy level § 1. The perturbation theory for formal Bloch solutions § 2. The structure of complex "Fermi-curves" § 3. The spectral theory of "finite-gap operators with respect to the level E0" and two-dimensional periodic Schrodinger operators References

[1]  G. Segal,et al.  Loop groups and equations of KdV type , 1985 .

[2]  V. Drinfel'd Commutative subrings of certain noncommutative rings , 1977 .

[3]  H. Baker Note on the foregoing paper, “commutative ordinary differential operators," by J. L. Burchnall and J. W. Chaundy , 1928 .

[4]  John D. Fay Theta Functions on Riemann Surfaces , 1973 .

[5]  S. Novikov Two-dimensional Schrödinger operators in periodic fields , 1985 .

[6]  橋本 英典,et al.  A. Erdelyi, W. Magnus, F. Oberhettinger and F. G. Tricomi ; Higher Transcendental Functions, Vols. I, II, III. McGraw-Hill, New York-Toronto-London, 1953, 1953, 1955. xxvi+302, xvii+396, xvii+292頁. 16×23.5cm. $6.50, $7.50, $6.50. , 1955 .

[7]  S. Novikov,et al.  Spectral theory of commuting operators of rank two with periodic coefficients , 1982 .

[8]  Boris Dubrovin,et al.  Theta functions and non-linear equations , 1981 .

[9]  S. Novikov,et al.  Algebras of virasoro type, riemann surfaces and structures of the theory of solitons , 1987 .

[10]  Igor Krichever,et al.  Integration of nonlinear equations by the methods of algebraic geometry , 1977 .

[11]  Henry P. McKean,et al.  Hill’s Operator and Hyperelliptic Function Theory in the Presence of Infinitely Many Branch Points , 1976 .

[12]  J. L. Burchnall,et al.  Commutative Ordinary Differential Operators , 1923 .

[13]  B. Dubrovin,et al.  REAL THETA-FUNCTION SOLUTIONS OF THE KADOMTSEV–PETVIASHVILI EQUATION , 1989 .

[14]  Mikio Sato Soliton Equations as Dynamical Systems on Infinite Dimensional Grassmann Manifold , 1983 .

[15]  Masaki Kashiwara,et al.  Transformation groups for soliton equations: IV. A new hierarchy of soliton equations of KP-type , 1982 .

[16]  I. Krichever Methods of Algebraic Geometry in the Theory of Non-linear Equations" Russian Math , 1981 .

[17]  I. Krichever Commutative rings of ordinary linear differential operators , 1978 .

[18]  Sergei Petrovich Novikov,et al.  NON-LINEAR EQUATIONS OF KORTEWEG-DE VRIES TYPE, FINITE-ZONE LINEAR OPERATORS, AND ABELIAN VARIETIES , 1976 .

[19]  David W. McLaughlin,et al.  Multiphase averaging and the inverse spectral solution of the Korteweg—de Vries equation , 1980 .

[20]  Takahiro Shiota,et al.  Characterization of Jacobian varieties in terms of soliton equations , 1986 .

[21]  S. Novikov,et al.  Holomorphic bundles over Riemann surfaces and the Kadomtsev—Petviashvili equation. I , 1978 .

[22]  H. McKean,et al.  The spectrum of Hill's equation , 1975 .

[23]  Sergei Petrovich Novikov,et al.  HOLOMORPHIC BUNDLES OVER ALGEBRAIC CURVES AND NON-LINEAR EQUATIONS , 1980 .

[24]  Sergei Petrovich Novikov,et al.  The periodic problem for the Korteweg—de vries equation , 1974 .

[25]  Igor Krichever,et al.  METHODS OF ALGEBRAIC GEOMETRY IN THE THEORY OF NON-LINEAR EQUATIONS , 1977 .