Imperfect automatic image classification successfully describes plankton distribution patterns

[1]  Cb Grimes,et al.  Spatial distribution and abundance of larval and juvenile fish, chlorophyll and macrozooplankton around the Mississippi River discharge plume, and the role of the plume in fish recruitment , 1991 .

[2]  Claire B Paris-Limouzy,et al.  Vertical distribution and ontogenetic "migration" in coral reef fish larvae , 2010 .

[3]  Adam T. Greer,et al.  Evaluation of the In Situ Ichthyoplankton Imaging System (ISIIS): comparison with the traditional (bongo net) sampler , 2013 .

[4]  Donald B. Olson,et al.  Life on the edge : marine life and fronts , 1994 .

[5]  L. Prieur,et al.  Daily and seasonal variations in the spatial distribution of zooplankton populations in relation to the physical structure in the Ligurian Sea Front , 1987 .

[6]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[7]  E. Houde,et al.  Deployment of an imaging system to investigate fine-scale spatial distribution of early life stages of the ctenophore Mnemiopsis leidyi in Chesapeake Bay , 2013 .

[8]  R. Cowen,et al.  In situ ichthyoplankton imaging system (ISIIS): system design and preliminary results , 2008 .

[9]  Marc Picheral,et al.  Digital zooplankton image analysis using the ZooScan integrated system , 2010 .

[10]  R. Lough,et al.  Development of micro-scale frequency distributions of plankton for inclusion in foraging models of larval fish, results from a Video Plankton Recorder , 2006 .

[11]  J. Moum,et al.  Energy and heat fluxes due to vertically propagating Yanai waves observed in the equatorial Indian Ocean , 2015 .

[12]  Adam T. Greer,et al.  The role of internal waves in larval fish interactions with potential predators and prey , 2014 .

[13]  Margaret A. McManus,et al.  Bottom-up regulation of a pelagic community through spatial aggregations , 2012, Biology Letters.

[14]  J. Boucher Localization of zooplankton populations in the Ligurian marine front: role of ontogenic migration , 1984 .

[15]  G. Gorsky,et al.  The Underwater Vision Profiler 5: An advanced instrument for high spatial resolution studies of particle size spectra and zooplankton , 2010 .

[16]  L. Prieur,et al.  Contrôle du phytoplancton du bassin Ligure par le front liguro-provençal (secteur Corse) , 1995 .

[17]  Feng Zhao,et al.  Pairwise Nonparametric Discriminant Analysis for Binary Plankton Image Recognition , 2014, IEEE Journal of Oceanic Engineering.

[18]  Phil F. Culverhouse,et al.  Automatic image analysis of plankton: future perspectives , 2006 .

[19]  P. Utgoff,et al.  RAPID: Research on Automated Plankton Identification , 2007 .

[20]  C. Davis,et al.  Real-time observation of taxa-specific plankton distributions: an optical sampling method , 2004 .

[21]  E. Hazen,et al.  Austral fall! winter transition of mesozooplankton assemblages and krill aggregations in an embayment west of the Antarctic Peninsula , 2012 .

[22]  A. Solow,et al.  Microaggregations of Oceanic Plankton Observed by Towed Video Microscopy , 1992, Science.

[23]  Zhenhua Guo,et al.  A Semi-Automated Image Analysis Procedure for In Situ Plankton Imaging Systems , 2015, PloS one.

[24]  Sam McClatchie,et al.  Resolution of fine biological structure including small narcomedusae across a front in the Southern California Bight , 2012 .

[25]  P. Wiebe,et al.  From the Hensen net toward four-dimensional biological oceanography , 2003 .

[26]  A. Bakun,et al.  Fronts and eddies as key structures in the habitat of marine fish larvae: opportunity, adaptive response and competitive advantage , 2006 .

[27]  L. Prieur,et al.  Aspects of the seasonal and mesoscale variabilities of the Northern Current in the western Mediterranean Sea inferred from the PROLIG-2 and PROS-6 experiments , 1995 .

[28]  Comparing two vertical plankton distributions , 2000 .

[29]  Scott Samson,et al.  A system for high-resolution zooplankton imaging , 2001 .

[30]  Adam T. Greer,et al.  Environmental drivers of the fine-scale distribution of a gelatinous zooplankton community across a mesoscale front , 2014 .

[31]  A. Herman,et al.  A continuous pump sampler for profiling copepods and chlorophyll in the upper oceanic layers , 1984 .

[32]  P. Clifford,et al.  Modifying the t test for assessing the correlation between two spatial processes , 1993 .

[33]  G. Hays A review of the adaptive significance and ecosystem consequences of zooplankton diel vertical migrations , 2003, Hydrobiologia.

[34]  P. Pinel-Alloul,et al.  Spatial heterogeneity as a multiscale characteristic of zooplankton community , 1995, Hydrobiologia.

[35]  L. Legendre,et al.  From Individual Plankton Cells To Pelagic Marine Ecosystems And To Global Biogeochemical Cycles , 1991 .

[36]  Lin Ye,et al.  Bayesian model for semi-automated zooplankton classification with predictive confidence and rapid category aggregation , 2011 .

[37]  Peter Cornillon,et al.  Fronts in Large Marine Ecosystems , 2009 .

[38]  Phil Culverhouse,et al.  Time to automate identification , 2010, Nature.

[39]  Adam T. Greer,et al.  Fine-scale planktonic habitat partitioning at a shelf-slope front revealed by a high-resolution imaging system , 2015 .

[40]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[41]  Pietro Perona,et al.  Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[42]  Seah Hock Soon,et al.  Binary SIPPER plankton image classification using random subspace , 2010, Neurocomputing.

[43]  P. Culverhouse,et al.  Do experts make mistakes? A comparison of human and machine identification of dinoflagellates , 2003 .

[44]  A. Sabatés,et al.  Planktonic cnidarian distribution and feeding of Pelagia noctiluca in the NW Mediterranean Sea , 2010, Hydrobiologia.

[45]  John D. Neilson,et al.  Diel vertical migrations of marine fishes: an obligate or facultative process? , 1990 .

[46]  R. Hopcroft,et al.  Assessment of ZooImage as a tool for the classification of zooplankton , 2008 .

[47]  J. A. Lozano,et al.  Optimizing the number of classes in automated zooplankton classification , 2009 .

[48]  Robert J. Olson,et al.  Automated taxonomic classification of phytoplankton sampled with imaging‐in‐flow cytometry , 2007 .

[49]  Peter H. Wiebe,et al.  Video plankton recorder estimates of copepod, pteropod and larvacean distributions from a stratified region of Georges Bank with comparative measurements from a MOCNESS sampler , 1996 .

[50]  F. Boissieu,et al.  Spatial and temporal variability of zooplankton off New Caledonia (Southwestern Pacific) from acoustics and net measurements , 2015 .

[51]  Qiao Hu,et al.  Automatic plankton image recognition with co-occurrence matrices and Support Vector Machine , 2005 .

[52]  G. Gorsky,et al.  Inter-annual fluctuations of zooplankton communities in the Bay of Villefranche-sur-mer from 1995 to 2005 (Northern Ligurian Sea, France) , 2011 .

[53]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[54]  Adam T. Greer,et al.  Relationships between phytoplankton thin layers and the fine-scale vertical distributions of two trophic levels of zooplankton , 2013 .

[55]  M. Olivar,et al.  Fronts and eddies as key structures in the habitat of marine fish larvae : opportunity , adaptive response and competitive advantage , 2006 .

[56]  L. Fenaux,et al.  Dispersal of echinoderm larvae in a geographical area marked by upwelling (Ligurian Sea, NW Mediterranean) , 1992 .