False Negatives for Remote Life Detection on Ocean-Bearing Planets: Lessons from the Early Earth

Abstract Ocean-atmosphere chemistry on Earth has undergone dramatic evolutionary changes throughout its long history, with potentially significant ramifications for the emergence and long-term stability of atmospheric biosignatures. Though a great deal of work has centered on refining our understanding of false positives for remote life detection, much less attention has been paid to the possibility of false negatives, that is, cryptic biospheres that are widespread and active on a planet's surface but are ultimately undetectable or difficult to detect in the composition of a planet's atmosphere. Here, we summarize recent developments from geochemical proxy records and Earth system models that provide insight into the long-term evolution of the most readily detectable potential biosignature gases on Earth—oxygen (O2), ozone (O3), and methane (CH4). We suggest that the canonical O2-CH4 disequilibrium biosignature would perhaps have been challenging to detect remotely during Earth's ∼4.5-billion-year history and that in general atmospheric O2/O3 levels have been a poor proxy for the presence of Earth's biosphere for all but the last ∼500 million years. We further suggest that detecting atmospheric CH4 would have been problematic for most of the last ∼2.5 billion years of Earth's history. More broadly, we stress that internal oceanic recycling of biosignature gases will often render surface biospheres on ocean-bearing silicate worlds cryptic, with the implication that the planets most conducive to the development and maintenance of a pervasive biosphere will often be challenging to characterize via conventional atmospheric biosignatures. Key Words: Biosignatures—Oxygen—Methane—Ozone—Exoplanets—Planetary habitability. Astrobiology 17, 287–297.

[1]  Joshua Krissansen-Totton,et al.  On Detecting Biospheres from Chemical Thermodynamic Disequilibrium in Planetary Atmospheres. , 2015, Astrobiology.

[2]  A. Scott,et al.  Phanerozoic concentrations of atmospheric oxygen reconstructed from sedimentary charcoal , 2010 .

[3]  R. Poole,et al.  FINDING EXTRATERRESTRIAL LIFE USING GROUND-BASED HIGH-DISPERSION SPECTROSCOPY , 2013, 1302.3251.

[4]  R. Summons,et al.  Rapid oxygenation of Earth’s atmosphere 2.33 billion years ago , 2016, Science Advances.

[5]  W. Reeburgh Oceanic methane biogeochemistry. , 2007, Chemical reviews.

[6]  W. R. Thompson,et al.  A search for life on Earth from the Galileo spacecraft , 1993, Nature.

[7]  David Crisp,et al.  Absorption of sunlight by water vapor in cloudy conditions: A partial explanation for the cloud absorption anomaly , 1997 .

[8]  D. Erwin,et al.  Earth’s oxygen cycle and the evolution of animal life , 2016, Proceedings of the National Academy of Sciences.

[9]  M. Latif,et al.  Phanerozoic evolution of atmospheric methane , 2008 .

[10]  Edward W. Schwieterman,et al.  The Habitability of Proxima Centauri b: Environmental States and Observational Discriminants , 2016, Astrobiology.

[11]  S. Lalonde,et al.  Oxidative sulfide dissolution on the early Earth , 2013 .

[12]  David C. Catling,et al.  The loss of mass‐independent fractionation in sulfur due to a Palaeoproterozoic collapse of atmospheric methane , 2006 .

[13]  S. Seager Exoplanet Habitability , 2013, Science.

[14]  J. Kasting Box models for the evolution of atmospheric oxygen: an update. , 1991, Global and planetary change.

[15]  Remko Stuik,et al.  Combining high-dispersion spectroscopy with high contrast imaging : Probing rocky planets around our nearest neighbors , 2015, 1503.01136.

[16]  G. Laughlin,et al.  Discovery and Characterization of Transiting Super Earths Using an All-Sky Transit Survey and Follow-up by the James Webb Space Telescope , 2009, 0903.4880.

[17]  K. von Braun,et al.  The NASA Exoplanet Archive: Data and Tools for Exoplanet Research , 2013, 1307.2944.

[18]  W. A. Traub,et al.  Spectral Evolution of an Earth-like Planet , 2006 .

[19]  Timothy M. Lenton,et al.  COPSE: a new model of biogeochemical cycling over Phanerozoic time , 2004 .

[20]  D. Crisp,et al.  Ground‐based near‐infrared observations of the Venus nightside: The thermal structure and water abundance near the surface , 1996 .

[21]  A. Misra,et al.  IDENTIFYING PLANETARY BIOSIGNATURE IMPOSTORS: SPECTRAL FEATURES OF CO AND O4 RESULTING FROM ABIOTIC O2/O3 PRODUCTION , 2016, The astrophysical journal. Letters.

[22]  D. Johnston Multiple sulfur isotopes and the evolution of Earth's surface sulfur cycle , 2011 .

[23]  Heinrich D. Holland,et al.  Volcanic gases, black smokers, and the great oxidation event , 2002 .

[24]  D. Canfield,et al.  Oxygen dynamics in the aftermath of the Great Oxidation of Earth’s atmosphere , 2013, Proceedings of the National Academy of Sciences.

[25]  S. Seager,et al.  Exoplanet Atmospheres , 2010 .

[26]  J. Kasting,et al.  The evolution of atmospheric ozone , 1980 .

[27]  Linda C. Kah,et al.  Oxygenation of the mid-Proterozoic atmosphere: clues from chromium isotopes in carbonates , 2016 .

[28]  J. Kasting,et al.  Quantifying the areal extent and dissolved oxygen concentrations of Archean oxygen oases , 2013 .

[29]  N. Planavsky,et al.  A shale-hosted Cr isotope record of low atmospheric oxygen during the Proterozoic , 2016 .

[30]  James E. Lovelock,et al.  Life detection by atmospheric analysis , 1967 .

[31]  Xiaoying Shi,et al.  Extremely low oxygen concentration in mid-Proterozoic shallow seawaters , 2016 .

[32]  Tyler D. Robinson,et al.  Characterizing Rocky and Gaseous Exoplanets with 2 m Class Space-based Coronagraphs , 2015, 1507.00777.

[33]  G. Tinetti,et al.  Disk-averaged synthetic spectra of Mars. , 2004, Astrobiology.

[34]  R. Berner,et al.  Interstitial water chemistry of anoxic Long Island Sound sediments. 1. Dissolved gases1 , 1977 .

[35]  C. F. Lillie,et al.  Characterizing Transiting Planet Atmospheres through 2025 , 2015, 1502.00004.

[36]  John S. Lewis,et al.  Book Review: The chemical evolution of the atmosphere and oceans. By Heinrich D. Holland. Princeton Univ. Press, Princeton, N.J., 1984. pp., pb 24.50, hb 75.00 , 1985 .

[37]  J. Kasting,et al.  ABIOTIC O2 LEVELS ON PLANETS AROUND F, G, K, AND M STARS: POSSIBLE FALSE POSITIVES FOR LIFE? , 2015, 1509.07863.

[38]  W. G. Chaloner,et al.  Fossil charcoal as evidence of past atmospheric composition , 1980, Nature.

[39]  Giada Arney,et al.  Spatially resolved measurements of H2O, HCl, CO, OCS, SO2, cloud opacity, and acid concentration in the Venus near‐infrared spectral windows , 2014 .

[40]  C. Pilcher,et al.  Biosignatures of early earths. , 2002, Astrobiology.

[41]  D. Canfield,et al.  Atmospheric oxygenation three billion years ago , 2013, Nature.

[42]  Mark Clampin,et al.  Discovery and Characterization of Transiting SuperEarths Using an All-Sky Transit Survey and Follow-Up by the James Webb Space Telescope , 2010 .

[43]  Shawn Domagal-Goldman,et al.  DETECTING AND CONSTRAINING N2 ABUNDANCES IN PLANETARY ATMOSPHERES USING COLLISIONAL PAIRS , 2015, 1507.07945.

[44]  A. Bekker,et al.  Chemostratigraphy of the Shaler Supergroup, Victoria Island, NW Canada: A record of ocean composition prior to the Cryogenian glaciations , 2015 .

[45]  D. Catling,et al.  How Earth's atmosphere evolved to an oxic state: A status report , 2005 .

[46]  P. Régnier,et al.  Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective , 2011 .

[47]  Andrew H Knoll,et al.  Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish , 2010, Proceedings of the National Academy of Sciences.

[48]  N. Planavsky,et al.  Long-term sedimentary recycling of rare sulphur isotope anomalies , 2013, Nature.

[49]  T. Lenton,et al.  The effect of widespread early aerobic marine ecosystems on methane cycling and the Great Oxidation , 2016 .

[50]  Michael A. Arthur,et al.  Methane-rich Proterozoic atmosphere? , 2003 .

[51]  S. Seager,et al.  BIOSIGNATURE GASES IN H2-DOMINATED ATMOSPHERES ON ROCKY EXOPLANETS , 2013, 1309.6016.

[52]  Tyler D. Robinson,et al.  ABIOTIC OZONE AND OXYGEN IN ATMOSPHERES SIMILAR TO PREBIOTIC EARTH , 2014, 1407.2622.

[53]  M. Gaffey,et al.  The Chemical Evolution of the Atmosphere and Oceans , 1984 .

[54]  Olivier Guyon,et al.  The Habitable Exoplanet (HabEx) Imaging Mission: preliminary science drivers and technical requirements , 2016, Astronomical Telescopes + Instrumentation.

[55]  Jonathan C. McDowell,et al.  James Webb Space Telescope , 2004 .

[56]  D. Canfield,et al.  Ferruginous Conditions: A Dominant Feature of the Ocean through Earth's History , 2011 .

[57]  Sara Seager,et al.  The future of spectroscopic life detection on exoplanets , 2014, Proceedings of the National Academy of Sciences.

[58]  S. Airieau,et al.  Observation of wavelength‐sensitive mass‐independent sulfur isotope effects during SO2 photolysis: Implications for the early atmosphere , 2001 .

[59]  H. Strauss,et al.  Rise in seawater sulphate concentration associated with the Paleoproterozoic positive carbon isotope excursion: evidence from sulphate evaporites in the ∼2.2–2.1 Gyr shallow‐marine Lucknow Formation, South Africa , 2008 .

[60]  M. Thiemens,et al.  Atmospheric influence of Earth's earliest sulfur cycle , 2000, Science.

[61]  Tyler D. Robinson,et al.  DETECTING OCEANS ON EXTRASOLAR PLANETS USING THE GLINT EFFECT , 2010, 1008.3864.

[62]  Kevin France,et al.  THE MUSCLES TREASURY SURVEY. III. X-RAY TO INFRARED SPECTRA OF 11 M AND K STARS HOSTING PLANETS , 2016, 1604.04776.

[63]  S. Kasten,et al.  An inorganic geochemical argument for coupled anaerobic oxidation of methane and iron reduction in marine sediments , 2014, Geobiology.

[64]  J. Kasting,et al.  Greenhouse warming by CH4 in the atmosphere of early Earth. , 2000, Journal of geophysical research.

[65]  M. Mayor,et al.  A Jupiter-mass companion to a solar-type star , 1995, Nature.

[66]  Robin Wordsworth,et al.  ABIOTIC OXYGEN-DOMINATED ATMOSPHERES ON TERRESTRIAL HABITABLE ZONE PLANETS , 2014, 1403.2713.

[67]  R. Pierrehumbert Strange news from other stars , 2013 .

[68]  A. Knoll,et al.  Redox heterogeneity of subsurface waters in the Mesoproterozoic ocean. , 2014, Geobiology.

[69]  N. Planavsky,et al.  The rise of oxygen in Earth’s early ocean and atmosphere , 2014, Nature.

[70]  Dorian S. Abbot,et al.  A FALSE POSITIVE FOR OCEAN GLINT ON EXOPLANETS: THE LATITUDE–ALBEDO EFFECT , 2012, 1205.1058.

[71]  Drake Deming,et al.  Earth as an extrasolar planet: Earth model validation using EPOXI earth observations. , 2011, Astrobiology.

[72]  W. G. Chaloner Fossil charcoal as an indicator of palaeoatmospheric oxygen level , 1989, Journal of the Geological Society.

[73]  A. Anbar,et al.  Transient episodes of mild environmental oxygenation and oxidative continental weathering during the late Archean , 2015, Science Advances.

[74]  Christopher T. Reinhard,et al.  Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event , 2014 .

[75]  K. Jucks,et al.  Remote sensing of planetary properties and biosignatures on extrasolar terrestrial planets. , 2002, Astrobiology.

[76]  James F Kasting,et al.  Using biogenic sulfur gases as remotely detectable biosignatures on anoxic planets. , 2011, Astrobiology.

[77]  D. Canfield,et al.  Sulfate was a trace constituent of Archean seawater , 2014, Science.

[78]  F. Gelman,et al.  Geochemical evidence for iron‐mediated anaerobic oxidation of methane , 2011 .

[79]  A. Anbar,et al.  A Late Archean Sulfidic Sea Stimulated by Early Oxidative Weathering of the Continents , 2009, Science.

[80]  Tori M. Hoehler,et al.  Field and laboratory studies of methane oxidation in an anoxic marine sediment: Evidence for a methanogen‐sulfate reducer consortium , 1994 .

[81]  A. Bekker,et al.  Sulfur record of rising and falling marine oxygen and sulfate levels during the Lomagundi event , 2012, Proceedings of the National Academy of Sciences.

[82]  Christopher T. Reinhard,et al.  Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals , 2014, Science.

[83]  J. Kasting,et al.  Mass-independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere. , 2002, Astrobiology.

[84]  B. Schink,et al.  Anaerobic methane oxidation coupled to denitrification is the dominant methane sink in a deep lake , 2014, Proceedings of the National Academy of Sciences.

[85]  A. Bekker,et al.  Proterozoic ocean redox and biogeochemical stasis , 2013, Proceedings of the National Academy of Sciences.

[86]  K. Zahnle,et al.  Anaerobic methanotrophy and the rise of atmospheric oxygen , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[87]  J. Lovelock,et al.  A Physical Basis for Life Detection Experiments , 1965, Nature.

[88]  Matthew S. Johnson,et al.  Geological sulfur isotopes indicate elevated OCS in the Archean atmosphere, solving faint young sun paradox , 2009, Proceedings of the National Academy of Sciences.

[89]  A. Bekker,et al.  Widespread iron-rich conditions in the mid-Proterozoic ocean , 2011, Nature.

[90]  N. Planavsky,et al.  Oceanic oxygenation events in the anoxic Ediacaran ocean , 2016, Geobiology.

[91]  Renyu Hu,et al.  STABILITY OF CO2 ATMOSPHERES ON DESICCATED M DWARF EXOPLANETS , 2015, 1501.06876.

[92]  J. Kasting,et al.  New insights into Archean sulfur cycle from mass-independent sulfur isotope records from the Hamersley Basin, Australia , 2003 .

[93]  A. Bekker,et al.  Large-scale fluctuations in Precambrian atmospheric and oceanic oxygen levels from the record of U in shales , 2013 .

[94]  H. D. Holland,et al.  Paleosols and the evolution of atmospheric oxygen: a critical review. , 1998, American journal of science.

[95]  Edward W. Schwieterman,et al.  DETECTION OF OCEAN GLINT AND OZONE ABSORPTION USING LCROSS EARTH OBSERVATIONS , 2014, 1405.4557.

[96]  H. Rix,et al.  The James Webb Space Telescope , 2006, astro-ph/0606175.

[97]  R. Luger,et al.  Extreme water loss and abiotic O2 buildup on planets throughout the habitable zones of M dwarfs. , 2014, Astrobiology.

[98]  Stephanie L. Olson,et al.  Limited role for methane in the mid-Proterozoic greenhouse , 2016, Proceedings of the National Academy of Sciences.

[99]  A. J. Kaufman,et al.  A Whiff of Oxygen Before the Great Oxidation Event? , 2007, Science.

[100]  Giada Arney,et al.  The Pale Orange Dot: The Spectrum and Habitability of Hazy Archean Earth , 2016, Astrobiology.

[101]  David C. Catling,et al.  Biogeochemical modelling of the rise in atmospheric oxygen , 2006 .

[102]  D. Valentine Emerging topics in marine methane biogeochemistry. , 2011, Annual review of marine science.

[103]  M. Claire,et al.  High rates of anaerobic methanotrophy at low sulfate concentrations with implications for past and present methane levels , 2011, Geobiology.

[104]  S. Seager,et al.  A BIOMASS-BASED MODEL TO ESTIMATE THE PLAUSIBILITY OF EXOPLANET BIOSIGNATURE GASES , 2013, 1309.6014.