Adaptive Image-Based Trajectory Tracking of Robots

This paper presents a new and novel controller for dynamic image-based trajectory tracking of a robot manipulator in uncalibrated environments. The controller is designed to cope with the case when the homogenous transformation matrix between the root and the vision system is unknown. A new adaptive algorithm, different from the Slotine and Li’s method, has been developed to estimate a set of parameters corresponding to the unknown transformation matrix. With a full consideration of dynamic responses of the robot manipulator, we employed the Lyapunov method to prove the convergence of the image errors of the trajectory to zero and the convergence of the estimated parameters to the real values up to a scale. Simulations and experiments have been conducted to demonstrate good convergence of the trajectory errors of the robot and the estimated parameters under the control of the proposed method.

[1]  Rafael Kelly,et al.  Robust asymptotically stable visual servoing of planar robots , 1996, IEEE Trans. Robotics Autom..

[2]  Lakmal Seneviratne,et al.  Adaptive Control Of Robot Manipulators , 1992, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems.

[3]  Alessandro Astolfi,et al.  Two solutions to the adaptive visual servoing problem , 2001, IEEE Trans. Robotics Autom..

[4]  Ezio Malis Visual servoing invariant to changes in camera-intrinsic parameters , 2004, IEEE Trans. Robotics Autom..

[5]  Olac Fuentes,et al.  Experimental evaluation of uncalibrated visual servoing for precision manipulation , 1997, Proceedings of International Conference on Robotics and Automation.

[6]  Peter I. Corke,et al.  A tutorial on visual servo control , 1996, IEEE Trans. Robotics Autom..

[7]  Yunhui Liu,et al.  Asymptotic trajectory tracking of manipulators using uncalibrated visual feedback , 2003 .

[8]  Liu Hsu,et al.  Adaptive visual tracking with uncertain manipulator dynamics and uncalibrated camera , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[9]  Jean Ponce,et al.  Computer Vision: A Modern Approach , 2002 .

[10]  Ezio Malis Visual servoing invariant to changes in camera-intrinsic parameters , 2001, IEEE Transactions on Robotics and Automation.

[11]  Erkan Zergeroglu,et al.  Robust Visual-Servo Control of Robot Manipulators in the Presence of Uncertainty , 2003, J. Field Robotics.

[12]  Gregory D. Hager,et al.  What can be done with an uncalibrated stereo system? , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[13]  Minoru Asada,et al.  Versatile visual servoing without knowledge of true Jacobian , 1994, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'94).

[14]  Oscar Nasisi,et al.  Adaptive robot control with visual feedback , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[15]  Mark W. Spong,et al.  Camera modelling for visual servo control applications , 1996 .

[16]  Harvey Lipkin,et al.  Uncalibrated dynamic visual servoing , 2004, IEEE Transactions on Robotics and Automation.