Bumblebees take the high road: climatically integrative biogeography shows that escape from Tibet, not Tibetan uplift, is associated with divergences of present‐day Mendacibombus

Many claims that uplift of the Qinghai-Tibetan plateau (QTP) drove the divergences of extant high-elevation biota have recently been challenged. For Mendacibombus bumblebees, high-elevation specialists with distributions centred on the QTP, we examine broader explanations. We extend integrative biogeography to cover multiple contributing factors by using a framework of sequential filters: 1) molecular evidence from four genes is used to estimate phylogenetic relationships, with time calibration from a published estimate; 2) spatial evidence from current distributions is combined with the phylogeny and constrained by a model of short-distance dispersal along mountain corridors to estimate ancestral distributions by both S-DIVA and S-DEC analysis; 3) geological evidence from the literature is used to constrain when high mountain ranges were uplifted to become potential corridors; and 4) climatological evidence from Mendacibombus niche-evolution reconstructions and from palaeoclimate simulations is used to constrain when habitat was suitable in key gaps within corridors. Explanations for Mendacibombus distributions can be identified that require only short-distance dispersal along mountain corridors, commensurate with the limited dispersal ability observed for bumblebees. These explanations depend on the timing of uplift of mountain ranges, regional climate change, and climate-niche evolution. The uplift of the QTP may have contributed to the initial Oligocene divergence of the common ancestor of Mendacibombus from other bumblebees, but for the first two thirds of the history of Mendacibombus, only a single lineage has present-day descendants. Divergence of multiple extant Mendacibombus lineages coincided with the Late Miocene–Pliocene uplift of externally connecting mountains, combined with regional climate cooling. These changes provided greater connectivity of suitable habitat, allowing these bumblebees to disperse out of the western QTP via new high bridges, escaping along the mountain corridors of the Tian Shan and Hindu Kush ranges, reaching eventually far to the west (Iberian Peninsula) and to the north-east (Kamchatka).

[1]  P. Mardulyn,et al.  Ecological niche modelling and coalescent simulations to explore the recent geographical range history of five widespread bumblebee species in Europe , 2017 .

[2]  P. Williams,et al.  Bumble Bees of North America , 2017 .

[3]  P. Williams,et al.  Early-diverging bumblebees from across the roof of the world: the high-mountain subgenus Mendacibombus revised from species' gene coalescents and morphology (Hymenoptera, Apidae). , 2016, Zootaxa.

[4]  S. Renner Available data point to a 4‐km‐high Tibetan Plateau by 40 Ma, but 100 molecular‐clock papers have linked supposed recent uplift to young node ages , 2016 .

[5]  A. S. Meseguer,et al.  Extinction in Phylogenetics and Biogeography: From Timetrees to Patterns of Biotic Assemblage , 2016, Front. Genet..

[6]  R. Sathishkumar,et al.  Stress-Induced Accumulation of DcAOX1 and DcAOX2a Transcripts Coincides with Critical Time Point for Structural Biomass Prediction in Carrot Primary Cultures (Daucus carota L.) , 2016, Front. Genet..

[7]  D. Michez,et al.  Conservation genetics of European bees: new insights from the continental scale , 2016, Conservation Genetics.

[8]  Paul H. Williams,et al.  Genes Suggest Ancestral Colour Polymorphisms Are Shared across Morphologically Cryptic Species in Arctic Bumblebees , 2015, PloS one.

[9]  Y. Yu,et al.  RASP (Reconstruct Ancestral State in Phylogenies): a tool for historical biogeography. , 2015, Molecular phylogenetics and evolution.

[10]  Historical species losses in bumblebee evolution , 2015, Biology Letters.

[11]  S. Jähnig,et al.  The role of the uplift of the Qinghai‐Tibetan Plateau for the evolution of Tibetan biotas , 2015, Biological reviews of the Cambridge Philosophical Society.

[12]  Paul H. Williams,et al.  Bumblebees, climate and glaciers across the Tibetan plateau (Apidae: Bombus Latreille) , 2015 .

[13]  A. Bourke,et al.  Habitat and Forage Associations of a Naturally Colonising Insect Pollinator, the Tree Bumblebee Bombus hypnorum , 2014, PloS one.

[14]  Luke J. Harmon,et al.  Geiger V2.0: an Expanded Suite of Methods for Fitting Macroevolutionary Models to Phylogenetic Trees , 2014, Bioinform..

[15]  P. Williams,et al.  The bumblebees of North China (Apidae, Bombus Latreille). , 2014, Zootaxa.

[16]  P. Schmid-Hempel,et al.  The invasion of southern South America by imported bumblebees and associated parasites. , 2014, The Journal of animal ecology.

[17]  Paul H. Williams,et al.  Bumble Bees of North America: An Identification Guide , 2014 .

[18]  I. Valterová,et al.  Scent of a break-up: phylogeography and reproductive trait divergences in the red-tailed bumblebee (Bombus lapidarius) , 2013, BMC Evolutionary Biology.

[19]  Cástor Guisande,et al.  ModestR: a software tool for managing and analyzing species distribution map databases , 2013 .

[20]  Huadong Guo,et al.  Vegetation greenness trend (2000 to 2009) and the climate controls in the Qinghai-Tibetan Plateau , 2013 .

[21]  J. Eronen,et al.  The relative roles of CO 2 and palaeogeography in determining Late Miocene climate: results from a terrestrial model-data comparison , 2012 .

[22]  Alberto Jiménez-Valverde,et al.  Delimiting the geographical background in species distribution modelling , 2012 .

[23]  Xiaoli Yan,et al.  What controlled Mid-Late Miocene long-term aridification in Central Asia? - Global cooling or Tibetan Plateau uplift: A review , 2012 .

[24]  Liam J. Revell,et al.  phytools: an R package for phylogenetic comparative biology (and other things) , 2012 .

[25]  P. Valdes,et al.  Ecosystem CO2 starvation and terrestrial silicate weathering: mechanisms and global‐scale quantification during the late Miocene , 2012 .

[26]  J. An,et al.  The bumblebees of the subgenus Subterraneobombus: integrating evidence from morphology and DNA barcodes (Hymenoptera, Apidae, Bombus) , 2011 .

[27]  N. Bystriakova,et al.  Phylogeography of the Sino-Himalayan Fern Lepisorus clathratus on “The Roof of the World” , 2011, PloS one.

[28]  Hélène Morlon,et al.  Reconciling molecular phylogenies with the fossil record , 2011, Proceedings of the National Academy of Sciences.

[29]  D. Beerling,et al.  Convergent Cenozoic CO2 history , 2011 .

[30]  P. Valdes,et al.  Enhanced chemistry-climate feedbacks in past greenhouse worlds , 2011, Proceedings of the National Academy of Sciences.

[31]  D. Goulson,et al.  Population structure, dispersal and colonization history of the garden bumblebee Bombus hortorum in the Western Isles of Scotland , 2011, Conservation Genetics.

[32]  Jeffrey D. Lozier,et al.  Patterns of widespread decline in North American bumble bees , 2011, Proceedings of the National Academy of Sciences.

[33]  Paul H. Williams,et al.  A simplified subgeneric classification of the bumblebees (genus Bombus) , 2011, Apidologie.

[34]  Xingjin He,et al.  S-DIVA (Statistical Dispersal-Vicariance Analysis): A tool for inferring biogeographic histories. , 2010, Molecular phylogenetics and evolution.

[35]  D. Goulson Impacts of non-native bumblebees in Western Europe and North America , 2010 .

[36]  J. Osborne,et al.  Estimation of bumblebee queen dispersal distances using sibship reconstruction method , 2010, Molecular ecology.

[37]  A. Drummond,et al.  Bayesian Inference of Species Trees from Multilocus Data , 2009, Molecular biology and evolution.

[38]  A. Yin Cenozoic tectonic evolution of Asia : A preliminary synthesis , 2010 .

[39]  B. Redelings,et al.  Reconstructing ancestral ranges in historical biogeography: properties and prospects , 2009 .

[40]  Peter J. Bradbury,et al.  The Last Glacial Maximum , 2009, Science.

[41]  R. Ree,et al.  Prospects and challenges for parametric models in historical biogeographical inference , 2009 .

[42]  Paul H. Williams,et al.  The bumblebees of Sichuan (Hymenoptera: Apidae, Bombini) , 2009 .

[43]  J. Pyle,et al.  Methane and the CH4 related greenhouse effect over the past 400 million years , 2009, American Journal of Science.

[44]  R. Moritz,et al.  Male flight distance and population substructure in the bumblebee Bombus terrestris. , 2009, The Journal of animal ecology.

[45]  A. Yin,et al.  Cenozoic tectonic evolution of the Qaidam basin and its surrounding regions (Part 3): Structural geology, sedimentation, and regional tectonic reconstruction , 2008 .

[46]  Chengshan Wang,et al.  Constraints on the early uplift history of the Tibetan Plateau , 2008, Proceedings of the National Academy of Sciences.

[47]  H. Hines Historical biogeography, divergence times, and diversification patterns of bumble bees (Hymenoptera: Apidae: Bombus). , 2008, Systematic biology.

[48]  Richard H. Ree,et al.  Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. , 2008, Systematic biology.

[49]  Gerald R. Dickens,et al.  An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics , 2008, Nature.

[50]  A. Rambaut,et al.  BEAST: Bayesian evolutionary analysis by sampling trees , 2007, BMC Evolutionary Biology.

[51]  P. Schmid-Hempel,et al.  Invasion success of the bumblebee, Bombus terrestris, despite a drastic genetic bottleneck , 2007, Heredity.

[52]  G. Gehrels,et al.  Late Cretaceous to middle Tertiary basin evolution in the central Tibetan Plateau: Changing environments in response to tectonic partitioning, aridification, and regional elevation gain , 2007 .

[53]  Paul H. Williams,et al.  A comprehensive phylogeny of the bumble bees (Bombus) , 2007 .

[54]  P. Gibbard,et al.  The extent and chronology of Cenozoic Global Glaciation , 2007 .

[55]  X. Fang,et al.  Tibetan plateau aridification linked to global cooling at the Eocene–Oligocene transition , 2007, Nature.

[56]  N. Harris The elevation history of the Tibetan Plateau and its implications for the Asian monsoon , 2006 .

[57]  P. M. Colgan,et al.  Cosmogenic radionuclide evidence for the limited extent of last glacial maximum glaciers in the Tanggula Shan of the Central Tibetan Plateau , 2006, Quaternary Research.

[58]  D. Goulson,et al.  Population structure and inbreeding in a rare and declining bumblebee, Bombus muscorum (Hymenoptera: Apidae) , 2006, Molecular ecology.

[59]  J. L. Parra,et al.  Very high resolution interpolated climate surfaces for global land areas , 2005 .

[60]  F. Lehmkuhl,et al.  Late Quaternary glaciation of Tibet and the bordering mountains: a review , 2005 .

[61]  D. Janzen,et al.  Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[62]  S. Schmid,et al.  Tectonic map and overall architecture of the Alpine orogen , 2004 .

[63]  Masao Ito,et al.  Phylogeny, historical biogeography, and character evolution in bumble bees (Bombus: Apidae) based on simultaneous analysis of three nuclear gene sequences. , 2004, Molecular phylogenetics and evolution.

[64]  P. White,et al.  The latitude-elevation relationship for spruce-fir forest and treeline along the Appalachian mountain chain , 1991, Vegetatio.

[65]  G. Gehrels,et al.  Building the Pamirs: The view from the underside: Geology , 2003 .

[66]  Paul Comtois,et al.  Bioclimatic indices as a tool in pollen forecasting , 2002, International journal of biometeorology.

[67]  L. Sloan,et al.  Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present , 2001, Science.

[68]  Nicolas Ray,et al.  A GIS-based vegetation map of the world at the Last Glacial Maximum (25,000-15,000 BP) , 2001 .

[69]  P. Schmid-Hempel,et al.  Female mating frequencies in Bombus spp. from Central Europe , 2000, Insectes Sociaux.

[70]  P. Mardulyn,et al.  The major opsin in bees (Insecta: Hymenoptera): A promising nuclear gene for higher level phylogenetics. , 1999, Molecular phylogenetics and evolution.

[71]  P. Schmid-Hempel,et al.  The population genetic structure of a large temperate pollinator species, Bombus pascuorum (Scopoli) (Hymenoptera: Apidae) , 1999, Molecular ecology.

[72]  Ge Yu,et al.  Pollen‐based biome reconstructions for China at 0 and 6000 years , 1998 .

[73]  A. Cooper,et al.  Evolutionary explosions and the phylogenetic fuse. , 1998, Trends in ecology & evolution.

[74]  Ge Yu,et al.  Pollen-based reconstruction of vegetation patterns of China in mid-Holocene , 1998 .

[75]  P. Williams An annotated checklist of bumble bees with an analysis of patterns of description (Hymenoptera: Apidae, Bombini) , 1998 .

[76]  R. Buttermore,et al.  Assessment of the genetic base of Tasmanian bumble bees (Bombus terrestris) for development as pollination agents , 1998 .

[77]  P. Williams Mapping variations in the strength and breadth of biogeographic transition zones using species turnover , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[78]  J. Cornuet,et al.  Genetic differentiation of continental and island populations of Bombus terrestris (Hymenoptera: Apidae) in Europe , 1996, Molecular ecology.

[79]  O. A. Braitseva,et al.  Ages of calderas, large explosive craters and active volcanoes in the Kuril-Kamchatka region, Russia , 1995 .

[80]  R. Crozier,et al.  Sex determination and population biology in the hymenoptera. , 1995, Trends in ecology & evolution.

[81]  M. Searle The rise and fall of Tibet , 1995, Nature.

[82]  M. Solignac,et al.  Monoandry and polyandry in bumble bees (Hymenoptera; Bombinae) as evidenced by highly variable microsatellites , 1995, Molecular ecology.

[83]  R. Macfarlane,et al.  Distribution of bumble bees in New Zealand , 1995 .

[84]  A. Austin,et al.  Molecular phylogeny of the insect order Hymenoptera: apocritan relationships. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[85]  H. Velthuis,et al.  Diploid males in the bumble bee Bombus terrestris , 1994 .

[86]  A. Pekkarinen,et al.  Zoogeography of Bombus and Psithyrus in northwestern Europe (Hymenoptera, Apidae) , 1993 .

[87]  R. Wharton,et al.  The application of nucleotide sequence data to phylogeny of the Hymenopterac a review , 1992 .

[88]  P. Williams The bumble bees of the Kashmir Himalaya lHymenopterac Apidaec Bombinir , 1991 .

[89]  Masao Ito Geographic Variation of an East Asian Bumblebee Bombus diversus in Some Morphometric Characters (Hymenoptera, Apidae) , 1987 .

[90]  P. Williams A preliminary cladistic investigation of relationships among the bumble bees (Hymenoptera, Apidae) , 1985 .

[91]  K. Mikkola Migration of wasp and bumble bee queens across the Gulf of Finland (Hymenoptera: Vespidae and Apidae) , 1984 .

[92]  坂上 昭一,et al.  The bumblebee fauna of the Kurile Islands (Hymenoptera : Apidae) , 1981 .

[93]  Douglas H. Johnson THE COMPARISON OF USAGE AND AVAILABILITY MEASUREMENTS FOR EVALUATING RESOURCE PREFERENCE , 1980 .

[94]  John B. Free,et al.  Bumblebee economics , 1979, Nature.

[95]  S. Sakagami Specific Differences in the Bionomic Characters of Bumblebees.:A Comparative Review (With 4 Text-figures) , 1976 .

[96]  Ingrid H. Williams Bumblebees … , 1975, Nature.

[97]  V. Barnett,et al.  Applied Linear Statistical Models , 1975 .

[98]  V. Haeseler Aculeate Hymenopteren über Nord- und Ostsee nach Untersuchungen auf Feuerschiffen , 1974 .