Minimizers of energy functionals

We consider a general class of problems of minimization of convex integralfunctionals (maximization of entropy) subject to linear constraints. Undergeneral assumptions, the minimizing solutions are characterized. Our resultsimprove previous literature on the subject in the following directions: -anecessary and suficient condition for the shape of the minimizing densityis proved -without constraint qualification -under infinitely many linearconstraints subject to natural integrability conditions (no topological restrictions).As an illustration, we give the general shape of the minimizing density forthe marginal problem on a product space. Finally, a counterexample of I. Csiszáris clarified. Our proofs mainly rely on convex duality.

[1]  Liming Wu,et al.  Bernstein Processes Associated with a Markov Process , 2000 .

[2]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[3]  M. Rao,et al.  Theory of Orlicz spaces , 1991 .

[4]  Fabrice Gamboa,et al.  BAYESIAN METHODS AND MAXIMUM ENTROPY FOR ILL-POSED INVERSE PROBLEMS , 1997 .

[5]  N. Bourbaki Espaces vectoriels topologiques , 1955 .

[6]  A. Beurling,et al.  An Automorphism of Product Measures , 1960 .

[7]  Didier Dacunha-Castelle,et al.  Maximum d'entropie et problème des moments , 1990 .

[8]  J. Zambrini Variational processes and stochastic versions of mechanics , 1986 .

[9]  I. Csiszár,et al.  MEM pixel correlated solutions for generalized moment and interpolation problems , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[10]  Jonathan M. Borwein,et al.  Strong Rotundity and Optimization , 1994, SIAM J. Optim..

[11]  Hans Föllmer,et al.  Random fields and diffusion processes , 1988 .

[12]  Paolo Dai Pra,et al.  A stochastic control approach to reciprocal diffusion processes , 1991 .

[13]  Jonathan M. Borwein,et al.  On the failure of maximum entropy reconstruction for Fredholm equations and other infinite systems , 1993, Math. Program..

[14]  I. Vajda,et al.  Convex Statistical Distances , 2018, Statistical Inference for Engineers and Data Scientists.

[15]  Pat Rick Large deviations and variational theorems for marginal problems , 1999 .

[16]  D. Pollard Convergence of stochastic processes , 1984 .

[17]  J. Borwein,et al.  Duality relationships for entropy-like minimization problems , 1991 .

[18]  Jonathan M. Borwein,et al.  On the convergence of moment problems , 1991 .

[19]  Marc Teboulle,et al.  Convergence of best phi-entropy estimates , 1993, IEEE Trans. Inf. Theory.

[20]  I. Csiszár Sanov Property, Generalized $I$-Projection and a Conditional Limit Theorem , 1984 .

[21]  J. Gärtner,et al.  Large deviations from the mckean-vlasov limit for weakly interacting diffusions , 1987 .

[22]  C. Léonard Minimization of Energy Functionals Applied to Some Inverse Problems , 2001 .

[23]  I. Csiszár Generalized projections for non-negative functions , 1995 .

[24]  Jonathan M. Borwein,et al.  Partially-Finite Programming in L1 and the Existence of Maximum Entropy Estimates , 1993, SIAM J. Optim..

[25]  Jonathan M. Borwein,et al.  Entropy minimization, DAD problems, and doubly stochastic kernels , 1994 .

[26]  P. Cattiaux,et al.  Large deviations and Nelson processes , 1995 .

[27]  I. Csiszár $I$-Divergence Geometry of Probability Distributions and Minimization Problems , 1975 .

[28]  C. Léonard Convex conjugates of integral functionals , 2001 .

[29]  L. Rüschendorf,et al.  Note on the Schrödinger equation and I-projections , 1993 .

[30]  Hans Föllmer,et al.  ENTROPY MINIMIZATION AND SCHRODINGER PROCESSES IN INFINITE DIMENSIONS , 1997 .

[31]  Jonathan M. Borwein,et al.  Decomposition of Multivariate Functions , 1992, Canadian Journal of Mathematics.

[32]  R. Rockafellar Conjugate Duality and Optimization , 1987 .