Pedestrian detection in far infrared images

This paper presents an experimental study on pedestrian classification and detection in far infrared FIR images. The study includes an in-depth evaluation of several combinations of features and classifiers, which include features previously used for daylight scenarios, as well as a new descriptor HOPE --Histograms of Oriented Phase Energy, specifically targeted to infrared images, and a new adaptation of a latent variable SVM approach to FIR images. The presented results are validated on a new classification and detection dataset of FIR images collected in outdoor environments from a moving vehicle. The classification space contains 16152 pedestrians and 65440 background samples evenly selected from several sequences acquired at different temperatures and different illumination conditions. The detection dataset consist on 15224 images with ground truth information. The authors are making this dataset public for benchmarking new detectors in the area of intelligent vehicles and field robotics applications.

[1]  Hojjat Adeli,et al.  Neural Network-Wavelet Microsimulation Model for Delay and Queue Length Estimation at Freeway Work Zones , 2006 .

[2]  Arjan Kuijper,et al.  3D Model Retrieval Using the Histogram of Orientation of Suggestive Contours , 2011, ISVC.

[3]  Fatih Murat Porikli,et al.  Integral histogram: a fast way to extract histograms in Cartesian spaces , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[4]  Hojjat Adeli,et al.  Principal Component Analysis-Enhanced Cosine Radial Basis Function Neural Network for Robust Epilepsy and Seizure Detection , 2008, IEEE Transactions on Biomedical Engineering.

[5]  Nasir G. Gharaibeh,et al.  A Spatial‐Bayesian Technique for Imputing Pavement Network Repair Data , 2012, Comput. Aided Civ. Infrastructure Eng..

[6]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[7]  Juan Manuel,et al.  Detección y modelado de carriles de vías interurbanas mediante análisis de imágenes para un sistema de ayuda a la conducción , 2009 .

[8]  Pietro Perona,et al.  Pedestrian detection: A benchmark , 2009, CVPR.

[9]  Tatsuo Arai,et al.  Vision‐Based Hierarchical Recognition for Dismantling Robot Applied to Interior Renewal of Buildings , 2011, Comput. Aided Civ. Infrastructure Eng..

[10]  Massimo Bertozzi,et al.  Shape-based pedestrian detection , 2000, Proceedings of the IEEE Intelligent Vehicles Symposium 2000 (Cat. No.00TH8511).

[11]  Peter H. Tu,et al.  Detecting and counting people in surveillance applications , 2005, IEEE Conference on Advanced Video and Signal Based Surveillance, 2005..

[12]  Fatih Murat Porikli,et al.  Pedestrian Detection via Classification on Riemannian Manifolds , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Paul A. Viola,et al.  Detecting Pedestrians Using Patterns of Motion and Appearance , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[14]  Chen Wei-gang Simultaneous object tracking and pedestrian detection using HOGs on contour , 2010, IEEE 10th INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS.

[15]  Bernt Schiele,et al.  Pedestrian detection in crowded scenes , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[16]  Massimo Bertozzi,et al.  Pedestrian detection for driver assistance using multiresolution infrared vision , 2004, IEEE Transactions on Vehicular Technology.

[17]  Hojjat Adeli,et al.  Freeway Work Zone Traffic Delay and Cost Optimization Model , 2003 .

[18]  Zehang Sun,et al.  On-road vehicle detection: a review , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  A. Kummert,et al.  The unscented Kalman filter for pedestrian tracking from a moving host , 2008, 2008 IEEE Intelligent Vehicles Symposium.

[20]  Hojjat Adeli,et al.  Object‐Oriented Model for Freeway Work Zone Capacity and Queue Delay Estimation , 2004 .

[21]  S.J. Krotosky,et al.  A Comparison of Color and Infrared Stereo Approaches to Pedestrian Detection , 2007, 2007 IEEE Intelligent Vehicles Symposium.

[22]  Mohan M. Trivedi,et al.  On Color-, Infrared-, and Multimodal-Stereo Approaches to Pedestrian Detection , 2007, IEEE Transactions on Intelligent Transportation Systems.

[23]  D Chisholm,et al.  Distribution of road traffic deaths by road user group: a global comparison , 2009, Injury Prevention.

[24]  Meng Joo Er,et al.  A Novel Efficient Learning Algorithm for Self-Generating Fuzzy Neural Network with Applications , 2012, Int. J. Neural Syst..

[25]  David A. Forsyth,et al.  Configuration Estimates Improve Pedestrian Finding , 2007, NIPS.

[26]  Arturo de la Escalera,et al.  Far infrared pedestrian detection and tracking for night driving , 2011, Robotica.

[27]  Liu Zhoufeng,et al.  AdaBoost learning for fabric defect detection based on HOG and SVM , 2011, 2011 International Conference on Multimedia Technology.

[28]  Hojjat Adeli,et al.  A probabilistic neural network for earthquake magnitude prediction , 2009, Neural Networks.

[29]  Ramakant Nevatia,et al.  Pedestrian Detection in Infrared Images based on Local Shape Features , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[30]  A. Shashua,et al.  Pedestrian detection for driving assistance systems: single-frame classification and system level performance , 2004, IEEE Intelligent Vehicles Symposium, 2004.

[31]  A. Broggi,et al.  Low-level Pedestrian Detection by means of Visible and Far Infra-red Tetra-vision , 2006, 2006 IEEE Intelligent Vehicles Symposium.

[32]  Kazuhiro Otsuka,et al.  Real-time Visual Tracker by Stream Processing , 2009, J. Signal Process. Syst..

[33]  Wei Zhang,et al.  Real-time Accurate Object Detection using Multiple Resolutions , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[34]  Pedro M. Domingos,et al.  Learning the structure of Markov logic networks , 2005, ICML.

[35]  Yinghuan Shi,et al.  Xcsc: a Novel Approach to Clustering with Extended Classifier System , 2011, Int. J. Neural Syst..

[36]  Josef Kittler,et al.  Threshold selection based on a simple image statistic , 1985, Comput. Vis. Graph. Image Process..

[37]  Peter Kovesi,et al.  Image Features from Phase Congruency , 1995 .

[38]  Pietro Perona,et al.  Integral Channel Features , 2009, BMVC.

[39]  Mark T. D. Cronin,et al.  The use of discriminant analysis, logistic regression and classification tree analysis in the development of classification models for human health effects , 2003 .

[40]  Hong-bo Qian,et al.  The Applications and Methods of Pedestrian Automated Detection , 2010, 2010 International Conference on Measuring Technology and Mechatronics Automation.

[41]  Mubarak Shah,et al.  Person Tracking in UAV Video , 2007, CLEAR.

[42]  A. Broggi,et al.  Infrared stereo vision-based pedestrian detection , 2005, IEEE Proceedings. Intelligent Vehicles Symposium, 2005..

[43]  Fernand Meyer,et al.  Topographic distance and watershed lines , 1994, Signal Process..

[44]  Keiichi Yamada,et al.  A shape-independent method for pedestrian detection with far-infrared images , 2004, IEEE Transactions on Vehicular Technology.

[45]  Arturo de la Escalera,et al.  Contrast invariant features for human detection in far infrared images , 2012, 2012 IEEE Intelligent Vehicles Symposium.

[46]  Basam Musleh,et al.  Visual ego motion estimation in urban environments based on U-V disparity , 2012, 2012 IEEE Intelligent Vehicles Symposium.

[47]  Dariu Gavrila,et al.  The Issues , 2011 .

[48]  Yichang Tsai,et al.  A Generalized Framework for Parallelizing Traffic Sign Inventory of Video Log Images Using Multicore Processors , 2012, Comput. Aided Civ. Infrastructure Eng..

[49]  A. Rogalski Infrared detectors: an overview , 2002 .

[50]  Pietro Perona,et al.  Unsupervised Learning of Models for Recognition , 2000, ECCV.

[51]  David A. McAllester,et al.  Object Detection with Discriminatively Trained Part Based Models , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[52]  Luc Van Gool,et al.  Depth and Appearance for Mobile Scene Analysis , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[53]  Fatin Zaklouta,et al.  Real-time traffic sign recognition using spatially weighted HOG trees , 2011, 2011 15th International Conference on Advanced Robotics (ICAR).

[54]  Matti Pietikäinen,et al.  Spatial-Temporal Granularity-Tunable Gradients Partition (STGGP) Descriptors for Human Detection , 2010, ECCV.

[55]  Helena Stigson,et al.  Literature review of pedestrian fatality risk as a function of car impact speed. , 2011, Accident; analysis and prevention.

[56]  Avinash C. Kak,et al.  PCA versus LDA , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[57]  A J McLean,et al.  Vehicle travel speeds and the incidence of fatal pedestrian crashes. , 1997, Accident; analysis and prevention.

[58]  Daw-Tung Lin,et al.  Integrating a mixed-feature model and multiclass support vector machine for facial expression recognition , 2009, Integr. Comput. Aided Eng..

[59]  Hironobu Fujiyoshi,et al.  Relational HOG feature with wild-card for object detection , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[60]  Peter Kovesi,et al.  Phase Congruency Detects Corners and Edges , 2003, DICTA.

[61]  E. Rückert Detecting Pedestrians by Learning Shapelet Features , 2007 .

[62]  John S. Zelek,et al.  Dense Surface from Infrared Stereo , 2007, 2007 IEEE Workshop on Applications of Computer Vision (WACV '07).

[63]  Stephen J. Maybank,et al.  Real-Time Tracking of Pedestrians and Vehicles , 2001 .

[64]  Dariu Gavrila,et al.  A Bayesian, Exemplar-Based Approach to Hierarchical Shape Matching , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[65]  Stefan Roth,et al.  People-tracking-by-detection and people-detection-by-tracking , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[66]  Fatih Murat Porikli,et al.  Human Detection via Classification on Riemannian Manifolds , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[67]  Pietro Cerri,et al.  An evaluation of monocular image stabilization algorithms for automotive applications , 2006, 2006 IEEE Intelligent Transportation Systems Conference.

[68]  Yupin Luo,et al.  Real-Time Pedestrian Detection and Tracking at Nighttime for Driver-Assistance Systems , 2009, IEEE Transactions on Intelligent Transportation Systems.

[69]  Gianni Vernazza,et al.  Image stabilization algorithms for video-surveillance applications , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[70]  Bir Bhanu,et al.  Tracking pedestrians with bacterial foraging optimization swarms , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[71]  Swarup Medasani,et al.  Classifier Swarms for Human Detection in Infrared Imagery , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[72]  Ramakant Nevatia,et al.  Detection and Tracking of Multiple, Partially Occluded Humans by Bayesian Combination of Edgelet based Part Detectors , 2007, International Journal of Computer Vision.

[73]  Jorge Herbert de Lira,et al.  Two-Dimensional Signal and Image Processing , 1989 .

[74]  Alain Rakotomamonjy,et al.  A Pedestrian Detector Using Histograms of Oriented Gradients and a Support Vector Machine Classifier , 2007, 2007 IEEE Intelligent Transportation Systems Conference.

[75]  Angel D. Sappa,et al.  Adaptive Image Sampling and Windows Classification for On-board Pedestrian Detection , 2007 .

[76]  Cordelia Schmid,et al.  Human Detection Based on a Probabilistic Assembly of Robust Part Detectors , 2004, ECCV.

[77]  John J. Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities , 1999 .

[78]  A. Fascioli,et al.  Pedestrian Protection Systems : Issues , Survey , and Challenges , 2007 .

[79]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[80]  Anne T McCartt,et al.  A review of evidence-based traffic engineering measures designed to reduce pedestrian-motor vehicle crashes. , 2003, American journal of public health.

[81]  Daniel Snow,et al.  Pedestrian detection using boosted features over many frames , 2008, 2008 19th International Conference on Pattern Recognition.

[82]  Ulrik Söderström,et al.  Reconstruction of occluded facial images using asymmetrical Principal Component Analysis , 2011, 2011 18th International Conference on Systems, Signals and Image Processing.

[83]  Paulo Peixoto,et al.  Semantic fusion of laser and vision in pedestrian detection , 2010, Pattern Recognit..

[84]  Hao Sun,et al.  Night Vision Pedestrian Detection Using a Forward-Looking Infrared Camera , 2011, 2011 International Workshop on Multi-Platform/Multi-Sensor Remote Sensing and Mapping.

[85]  Subhransu Maji,et al.  Classification using intersection kernel support vector machines is efficient , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[86]  Aura Conci,et al.  Using adaptive background subtraction into a multi-level model for traffic surveillance , 2012, Integr. Comput. Aided Eng..

[87]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[88]  Hao Sun,et al.  Real-time infrared pedestrian detection based on multi-block LBP , 2010, 2010 International Conference on Computer Application and System Modeling (ICCASM 2010).

[89]  Hojjat Adeli,et al.  Wavelet‐Clustering‐Neural Network Model for Freeway Incident Detection , 2003 .

[90]  Elias Oliveira,et al.  Human automatic detection and tracking for outdoor video , 2011, Integr. Comput. Aided Eng..

[91]  Shuicheng Yan,et al.  An HOG-LBP human detector with partial occlusion handling , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[92]  D. Burr,et al.  Feature detection in human vision: a phase-dependent energy model , 1988, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[93]  Charless C. Fowlkes,et al.  Multiresolution Models for Object Detection , 2010, ECCV.

[94]  Jean-Thierry Lapresté,et al.  Real-Time Tracking with Classifiers , 2006, WDV.

[95]  Dariu Gavrila,et al.  Real-time object detection for "smart" vehicles , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[96]  Hojjat Adeli,et al.  Feature Extraction for Traffic Incident Detection Using Wavelet Transform and Linear Discriminant Analysis , 2000 .

[97]  M. Mahlisch,et al.  A multiple detector approach to low-resolution FIR pedestrian recognition , 2005, IEEE Proceedings. Intelligent Vehicles Symposium, 2005..

[98]  Jitendra Malik,et al.  Recognition using regions , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[99]  Massimo Bertozzi,et al.  Vision-based intelligent vehicles: State of the art and perspectives , 2000, Robotics Auton. Syst..

[100]  Gary R. Bradski,et al.  Learning OpenCV - computer vision with the OpenCV library: software that sees , 2008 .

[101]  Bernt Schiele,et al.  New features and insights for pedestrian detection , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[102]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[103]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[104]  Benjamin B. Kimia,et al.  Exploring the representation capabilities of the HOG descriptor , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[105]  Hojjat Adeli,et al.  Enhanced probabilistic neural network with local decision circles: A robust classifier , 2010, Integr. Comput. Aided Eng..

[106]  Massimo Bertozzi,et al.  Pedestrian detection by means of far-infrared stereo vision , 2007, Comput. Vis. Image Underst..

[107]  Thomas B. Moeslund,et al.  Thermal cameras and applications: a survey , 2013, Machine Vision and Applications.

[108]  Larry S. Davis,et al.  Tracking humans from a moving platform , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[109]  Fernando García,et al.  Identifying and Tracking Pedestrians Based on Sensor Fusion and Motion Stability Predictions , 2010, Sensors.

[110]  Pietro Perona,et al.  The Fastest Pedestrian Detector in the West , 2010, BMVC.

[111]  Mubarak Shah,et al.  A Fast algorithm for active contours and curvature estimation , 1992, CVGIP Image Underst..

[112]  Alberto Broggi,et al.  Model-based validation approaches and matching techniques for automotive vision based pedestrian detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) - Workshops.

[113]  Sankaran Mahadevan,et al.  Bayesian wavelet packet denoising for structural system identification , 2007 .

[114]  A. Broggi,et al.  A modular tracking system for far infrared pedestrian recognition , 2005, IEEE Proceedings. Intelligent Vehicles Symposium, 2005..

[115]  Alexei A. Efros,et al.  Putting Objects in Perspective , 2006, CVPR.

[116]  Gao Chao,et al.  Human detection in far-infrared images based on histograms of maximal oriented energy map , 2007, 2007 International Conference on Wavelet Analysis and Pattern Recognition.

[117]  Qing Jun Wang,et al.  LPP-HOG: A New Local Image Descriptor for Fast Human Detection , 2008, 2008 IEEE International Symposium on Knowledge Acquisition and Modeling Workshop.

[118]  A. Broggi,et al.  A software video stabilization system for automotive oriented applications , 2005, 2005 IEEE 61st Vehicular Technology Conference.

[119]  A. Broggi,et al.  Pedestrian localization and tracking system with Kalman filtering , 2004, IEEE Intelligent Vehicles Symposium, 2004.

[120]  Paulo Peixoto,et al.  A Lidar and Vision-based Approach for Pedestrian and Vehicle Detection and Tracking , 2007, 2007 IEEE Intelligent Transportation Systems Conference.

[121]  Arturo de la Escalera,et al.  Sistema avanzado de asistencia a la conducción para la detección de la somnolencia , 2011 .

[122]  Heewook Jung,et al.  Applying HOG feature to the detection and tracking of a human on a bicycle , 2011, 2011 11th International Conference on Control, Automation and Systems.

[123]  Massimo Bertozzi,et al.  IR Pedestrian Detection for Advanced Driver Assistance Systems , 2003, DAGM-Symposium.

[124]  D J Field,et al.  Relations between the statistics of natural images and the response properties of cortical cells. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[125]  Hua Huang,et al.  Pedestrian Detection Using Boosted HOG Features , 2008, 2008 11th International IEEE Conference on Intelligent Transportation Systems.

[126]  Xin Li,et al.  Layered Representation for Pedestrian Detection and Tracking in Infrared Imagery , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) - Workshops.

[127]  Andrew Zisserman,et al.  Representing shape with a spatial pyramid kernel , 2007, CIVR '07.

[128]  Greg Welch,et al.  Welch & Bishop , An Introduction to the Kalman Filter 2 1 The Discrete Kalman Filter In 1960 , 1994 .

[129]  Luc Van Gool,et al.  Pedestrian detection at 100 frames per second , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[130]  Chongzhao Han,et al.  Night-time pedestrian detection by visual-infrared video fusion , 2008, 2008 7th World Congress on Intelligent Control and Automation.

[131]  Chih-Min Lin,et al.  Adaptive Control for MIMO uncertain nonlinear Systems Using Recurrent Wavelet Neural Network , 2012, Int. J. Neural Syst..

[132]  Alexandrina Rogozan,et al.  Pedestrian recognition based on hierarchical codebook of SURF features in visible and infrared images , 2010, 2010 IEEE Intelligent Vehicles Symposium.

[133]  Heiko Neumann,et al.  Detection and classification of obstacles in night vision traffic scenes based on infrared imagery , 2003, Proceedings of the 2003 IEEE International Conference on Intelligent Transportation Systems.

[134]  Kazuyuki Murase,et al.  A Lempel-Ziv Complexity-Based Neural Network Pruning Algorithm , 2011, Int. J. Neural Syst..

[135]  Dariu Gavrila,et al.  Monocular Pedestrian Detection: Survey and Experiments , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[136]  Pat Langley,et al.  Estimating Continuous Distributions in Bayesian Classifiers , 1995, UAI.

[137]  Markus Kohler,et al.  Using the Kalman Filter to track Human Interactive Motion - Modelling and Initialization of the Kalm , 1997 .

[138]  François Brémond,et al.  Tracking HoG Descriptors for Gesture Recognition , 2009, 2009 Sixth IEEE International Conference on Advanced Video and Signal Based Surveillance.

[139]  Tomaso A. Poggio,et al.  Example-Based Object Detection in Images by Components , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[140]  Arkady Borisov,et al.  Ranking-Based Kernels in Applied Biomedical Diagnostics Using a Support Vector Machine , 2011, Int. J. Neural Syst..

[141]  Edward Jones,et al.  A review of automotive infrared pedestrian detection techniques , 2008 .

[142]  Sergio A. Velastin,et al.  Backgroundless detection of pedestrians in cluttered conditions based on monocular images: a review , 2012 .

[143]  Bo Ling,et al.  Multiple pedestrian detection using IR LED stereo camera , 2007, SPIE Optics East.

[144]  Mei-Chen Yeh,et al.  Fast Human Detection Using a Cascade of Histograms of Oriented Gradients , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[145]  Tomaso A. Poggio,et al.  Example-Based Learning for View-Based Human Face Detection , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[146]  Massimo Bertozzi,et al.  Self-calibration of a stereo vision system for automotive applications , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[147]  Stephen J. Maybank,et al.  Fusion of Multiple Tracking Algorithms for Robust People Tracking , 2002, ECCV.

[148]  Rainer Lienhart,et al.  An extended set of Haar-like features for rapid object detection , 2002, Proceedings. International Conference on Image Processing.

[149]  Keiichi Yamada,et al.  Comparison between infrared-image-based and visible-image-based approaches for pedestrian detection , 2003, IEEE IV2003 Intelligent Vehicles Symposium. Proceedings (Cat. No.03TH8683).

[150]  A. Broggi,et al.  Pedestrian Detection in Far Infrared Images based on the use of Probabilistic Templates , 2007, 2007 IEEE Intelligent Vehicles Symposium.

[151]  Wenjia Wang,et al.  Novel Consensus Approaches to the Reliable Ranking of Features for Seabed Imagery Classification , 2012, Int. J. Neural Syst..

[152]  Yozo Fujino,et al.  Concrete Crack Detection by Multiple Sequential Image Filtering , 2012, Comput. Aided Civ. Infrastructure Eng..

[153]  J. Pablo,et al.  Advanced driver assistance system based on computer vision using detection, recognition and tracking of road signs , 2009 .

[154]  Li Dong,et al.  HOG based multi-stage object detection and pose recognition for service robot , 2010, 2010 11th International Conference on Control Automation Robotics & Vision.

[155]  Arturo de la Escalera,et al.  Pedestrian Detection for Intelligent Vehicles Based on Active Contour Models and Stereo Vision , 2005, EUROCAST.

[156]  Uwe Franke,et al.  Real-time stereo vision for urban traffic scene understanding , 2000, Proceedings of the IEEE Intelligent Vehicles Symposium 2000 (Cat. No.00TH8511).

[157]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[158]  Ramakant Nevatia,et al.  Cluster Boosted Tree Classifier for Multi-View, Multi-Pose Object Detection , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[159]  W. Ritter,et al.  Detection and Tracking of Multiple Pedestrians in Automotive Applications , 2007, 2007 IEEE Intelligent Vehicles Symposium.

[160]  Hoai Bac Le,et al.  Improved HOG Descriptors , 2011, 2011 Third International Conference on Knowledge and Systems Engineering.

[161]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[162]  Pietro Perona,et al.  Pedestrian Detection: An Evaluation of the State of the Art , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[163]  Ramakant Nevatia,et al.  Efficient scan-window based object detection using GPGPU , 2008, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[164]  P. D. Thouin,et al.  Survey and comparative analysis of entropy and relative entropy thresholding techniques , 2006 .

[165]  Ridhi Jindal,et al.  SIFT: Scale Invariant Feature Transform (Review) , 2014 .

[166]  Dariu Gavrila,et al.  An Experimental Study on Pedestrian Classification , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[167]  A. Broggi,et al.  Pedestrian Detection using Infrared images and Histograms of Oriented Gradients , 2006, 2006 IEEE Intelligent Vehicles Symposium.

[168]  J. Munkres ALGORITHMS FOR THE ASSIGNMENT AND TRANSIORTATION tROBLEMS* , 1957 .

[169]  Martin Glavin,et al.  Detection of pedestrians in far-infrared automotive night vision using region-growing and clothing distortion compensation , 2010 .

[170]  Wei Wang,et al.  Structural Reliability Assessment by Local Approximation of Limit State Functions Using Adaptive Markov Chain Simulation and Support Vector Regression , 2012, Comput. Aided Civ. Infrastructure Eng..

[171]  R. Elsley,et al.  The DARPA grand challenge - development of an autonomous vehicle , 2004, IEEE Intelligent Vehicles Symposium, 2004.

[172]  Yoram Singer,et al.  Improved Boosting Algorithms Using Confidence-rated Predictions , 1998, COLT' 98.

[173]  Pengfei Shi,et al.  Iris Feature Extraction Using 2D Phase Congruency , 2005, Third International Conference on Information Technology and Applications (ICITA'05).

[174]  Jean-Philippe Tarel,et al.  Real time obstacle detection in stereovision on non flat road geometry through "v-disparity" representation , 2002, Intelligent Vehicle Symposium, 2002. IEEE.

[175]  Lie Guo,et al.  Study on pedestrian detection and tracking with monocular vision , 2010, 2010 2nd International Conference on Computer Technology and Development.

[176]  Chunsun Zhang,et al.  An Unmanned Aerial Vehicle‐Based Imaging System for 3D Measurement of Unpaved Road Surface Distresses 1 , 2012, Comput. Aided Civ. Infrastructure Eng..

[177]  Alberto Broggi,et al.  Pedestrian detection in infrared images , 2003, IEEE IV2003 Intelligent Vehicles Symposium. Proceedings (Cat. No.03TH8683).

[178]  Navneet Dalal,et al.  Finding People in Images and Videos , 2006 .

[179]  Boguslaw Cyganek,et al.  Circular road signs recognition with soft classifiers , 2007, Integr. Comput. Aided Eng..

[180]  Ignacio Parra,et al.  Combination of Feature Extraction Methods for SVM Pedestrian Detection , 2007, IEEE Transactions on Intelligent Transportation Systems.

[181]  Ramakant Nevatia,et al.  Optimizing discrimination-efficiency tradeoff in integrating heterogeneous local features for object detection , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[182]  Bernt Schiele,et al.  Sliding-Windows for Rapid Object Class Localization: A Parallel Technique , 2008, DAGM-Symposium.

[183]  Yan-ping Chen,et al.  Fast hog feature computation based on CUDA , 2011, 2011 IEEE International Conference on Computer Science and Automation Engineering.

[184]  Clemente Ibarra-Castanedo,et al.  Advanced surveillance systems: combining video and thermal imagery for pedestrian detection , 2004, SPIE Defense + Commercial Sensing.

[185]  Thomas Villmann,et al.  Efficient Kernelized Prototype Based Classification , 2011, Int. J. Neural Syst..

[186]  Cristiano Premebida,et al.  Fusing LIDAR, camera and semantic information: A context-based approach for pedestrian detection , 2013, Int. J. Robotics Res..

[187]  David A. McAllester,et al.  A discriminatively trained, multiscale, deformable part model , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[188]  T. Dang,et al.  Stereo calibration in vehicles , 2004, IEEE Intelligent Vehicles Symposium, 2004.

[189]  Xia Liu,et al.  Pedestrian detection and tracking with night vision , 2005, IEEE Transactions on Intelligent Transportation Systems.

[190]  Meng Wan,et al.  Adaptive Target Detection and Matching for a Pedestrian Tracking System , 2006, 2006 IEEE International Conference on Systems, Man and Cybernetics.

[191]  Larry S. Davis,et al.  Probabilistic template based pedestrian detection in infrared videos , 2002, Intelligent Vehicle Symposium, 2002. IEEE.

[192]  Cristina Hilario Gómez Detección de peatones en el espectro visible e infrarrojo para un sistema avanzado de asistencia a la conducción , 2011 .

[193]  A. Broggi,et al.  Pedestrian Detection on a Moving Vehicle: an Investigation about Near Infra-Red Images , 2006, 2006 IEEE Intelligent Vehicles Symposium.

[194]  Pedro M. Domingos,et al.  Lifted First-Order Belief Propagation , 2008, AAAI.

[195]  J Eichhorn,et al.  Object categorization with SVM: kernels for local features , 2004 .

[196]  Arturo de la Escalera,et al.  Driver Drowsiness Warning System Using Visual Information for Both Diurnal and Nocturnal Illumination Conditions , 2010, EURASIP J. Adv. Signal Process..

[197]  Tomaso A. Poggio,et al.  A Trainable System for Object Detection , 2000, International Journal of Computer Vision.

[198]  Luciano Oliveira,et al.  Context-aware pedestrian detection using LIDAR , 2010, 2010 IEEE Intelligent Vehicles Symposium.

[199]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[200]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[201]  Massimo Bertozzi,et al.  A Symmetry-based Validator and Refinement System for Pedestrian Detection in Far Infrared Images , 2007, 2007 IEEE Intelligent Transportation Systems Conference.

[202]  Wei Li,et al.  An effective approach to pedestrian detection in thermal imagery , 2012, 2012 8th International Conference on Natural Computation.

[203]  M. K. Hinders,et al.  Passive Infrared Thermographic Imaging for Mobile Robot Object Identification , 2010 .

[204]  Tomaso,et al.  A Trainable System for People DetectionMichael , 1997 .

[205]  Luc Van Gool,et al.  Robust Multiperson Tracking from a Mobile Platform , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[206]  Takao Kawamura,et al.  Bypass methods for constructing robust automatic human tracking system , 2010, Integr. Comput. Aided Eng..

[207]  Yoshiaki Shirai,et al.  Real-Time Surveillance System Detecting Persons in Complex Scenes , 2001, Real Time Imaging.

[208]  Ernst D. Dickmanns,et al.  Dynamic Vision for Perception and Control of Motion , 2007 .

[209]  David C. Hogg,et al.  An efficient method for contour tracking using active shape models , 1994, Proceedings of 1994 IEEE Workshop on Motion of Non-rigid and Articulated Objects.

[210]  Yoav Freund,et al.  A Short Introduction to Boosting , 1999 .

[211]  P. Williams,et al.  Near-Infrared Technology in the Agricultural and Food Industries , 1987 .

[212]  Jun-Wei Hsieh,et al.  New automatic multi-level thresholding technique for segmentation of thermal images , 1997, Image Vis. Comput..

[213]  Donald Prévost,et al.  Combination of colour and thermal sensors for enhanced object detection , 2007, 2007 10th International Conference on Information Fusion.

[214]  Hojjat Adeli,et al.  Mesoscopic-Wavelet Freeway Work Zone Flow and Congestion Feature Extraction Model , 2004 .

[215]  Thomas G. Dietterich Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms , 1998, Neural Computation.

[216]  Hojjat Adeli,et al.  FUZZY-WAVELET RBFNN MODEL FOR FREEWAY INCIDENT DETECTION , 2000 .

[217]  Dragoljub Pokrajac,et al.  People detection in low resolution infrared videos , 2008, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[218]  Zeng Chen,et al.  Automatic image search based on improved feature descriptors and decision tree , 2011, Integr. Comput. Aided Eng..

[219]  D.M. Gavrila,et al.  Vision-based pedestrian detection: the PROTECTOR system , 2004, IEEE Intelligent Vehicles Symposium, 2004.

[220]  Dariu Gavrila,et al.  Multi-cue pedestrian classification with partial occlusion handling , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[221]  E Pasanen,et al.  DRIVING SPEEDS AND PEDESTRIAN SAFETY: A MATHEMATICAL MODEL , 1992 .

[222]  Dariu Gavrila,et al.  Pedestrian Detection from a Moving Vehicle , 2000, ECCV.

[223]  David Fernández Llorca,et al.  Stereo regions-of-interest selection for pedestrian protection: A survey , 2012 .

[224]  Peter Bajcsy,et al.  Characterizing human subjects in real-time and three-dimensional spaces by integrating thermal-infrared and visible spectrum cameras , 2009, 2009 IEEE International Conference on Multimedia and Expo.

[225]  Shane Brennan,et al.  A Fast Stereo-based System for Detecting and Tracking Pedestrians from a Moving Vehicle , 2009, Int. J. Robotics Res..

[226]  Bernt Schiele,et al.  Monocular 3D Scene Modeling and Inference: Understanding Multi-Object Traffic Scenes , 2010, ECCV.

[227]  Arturo de la Escalera,et al.  Recognition Stage for a Speed Supervisor Based on Road Sign Detection , 2012, Sensors.

[228]  David Gerónimo Gómez,et al.  Survey of Pedestrian Detection for Advanced Driver Assistance Systems , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[229]  Liang Zhao,et al.  Stereo- and neural network-based pedestrian detection , 1999, Proceedings 199 IEEE/IEEJ/JSAI International Conference on Intelligent Transportation Systems (Cat. No.99TH8383).

[230]  Huadong Ma,et al.  Robust Head-Shoulder Detection by PCA-Based Multilevel HOG-LBP Detector for People Counting , 2010, 2010 20th International Conference on Pattern Recognition.

[231]  Ramakant Nevatia,et al.  Tracking of Multiple, Partially Occluded Humans based on Static Body Part Detection , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[232]  Jean-Yves Bouguet,et al.  Camera calibration toolbox for matlab , 2001 .

[233]  Larry S. Davis,et al.  Hierarchical Part-Template Matching for Human Detection and Segmentation , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[234]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[235]  Kazuyuki Murase,et al.  Ensembles of Neural Networks Based on the Alteration of Input Feature Values , 2012, Int. J. Neural Syst..

[236]  Xin Li,et al.  Pedestrian detection and tracking in infrared imagery using shape and appearance , 2007, Comput. Vis. Image Underst..

[237]  Lars Petersson,et al.  Large scale sign detection using HOG feature variants , 2011, 2011 IEEE Intelligent Vehicles Symposium (IV).

[238]  Hojjat Adeli,et al.  TOWARD INTELLIGENT VARIABLE MESSAGE SIGNS IN FREEWAY WORK ZONES: NEURAL NETWORK MODEL , 2004 .

[239]  Bernt Schiele,et al.  An Evaluation of Local Shape-Based Features for Pedestrian Detection , 2005, BMVC.

[240]  Hojjat Adeli,et al.  Comparison of fuzzy-wavelet radial basis function neural network freeway incident detection model with California algorithm , 2002 .

[241]  Larry S. Davis,et al.  Pedestrian tracking from a moving vehicle , 2000, Proceedings of the IEEE Intelligent Vehicles Symposium 2000 (Cat. No.00TH8511).

[242]  Jeffrey K. Uhlmann,et al.  New extension of the Kalman filter to nonlinear systems , 1997, Defense, Security, and Sensing.

[243]  G. Wanielik,et al.  Shape and motion-based pedestrian detection in infrared images: a multi sensor approach , 2005, IEEE Proceedings. Intelligent Vehicles Symposium, 2005..

[244]  Dorin Comaniciu,et al.  An Algorithm for Data-Driven Bandwidth Selection , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[245]  Anil K. Jain,et al.  Statistical Pattern Recognition: A Review , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[246]  Cordelia Schmid,et al.  Local Grayvalue Invariants for Image Retrieval , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[247]  Luc Van Gool,et al.  Dynamic 3D Scene Analysis from a Moving Vehicle , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[248]  James W. Davis,et al.  A Two-Stage Template Approach to Person Detection in Thermal Imagery , 2005, 2005 Seventh IEEE Workshops on Applications of Computer Vision (WACV/MOTION'05) - Volume 1.

[249]  J. Bärgman,et al.  Pedestrian Detection with near and far Infrared Night Vision Enhancement , 2007 .

[250]  Pietro Perona,et al.  Multiple Component Learning for Object Detection , 2008, ECCV.

[251]  Stewart Worrall,et al.  Sensor modelling for radar-based occupancy mapping , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[252]  Hichem Sahli,et al.  Active stereo vision-based mobile robot navigation for person tracking , 2005, Integr. Comput. Aided Eng..

[253]  Pedro M. Domingos,et al.  Discriminative Training of Markov Logic Networks , 2005, AAAI.

[254]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[255]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.

[256]  Germain Forestier,et al.  Discovering Significant Evolution Patterns from Satellite Image Time Series , 2011, Int. J. Neural Syst..

[257]  Sze Chun Wong,et al.  High-Order Computational Scheme for a Dynamic Continuum Model for Bi-Directional Pedestrian Flows , 2011, Comput. Aided Civ. Infrastructure Eng..

[258]  S Milch,et al.  PEDESTRIAN DETECTION WITH RADAR AND COMPUTER VISION , 2001 .

[259]  Luca Quadrifoglio,et al.  Comparing Ant Colony Optimization and Genetic Algorithm Approaches for Solving Traffic Signal Coordination under Oversaturation Conditions , 2012, Comput. Aided Civ. Infrastructure Eng..

[260]  Stefano Ghidoni,et al.  Vision Technologies for Intelligent Vehicles , 2007, KES.

[261]  R. Nevatia,et al.  Simultaneous Object Detection and Segmentation by Boosting Local Shape Feature based Classifier , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[262]  Bill Triggs,et al.  Feature Sets and Dimensionality Reduction for Visual Object Detection , 2010, BMVC.

[263]  T. Shioyama,et al.  Detection of pedestrian crossing and measurement of crossing length - an image-based navigational aid for blind people , 2005, Proceedings. 2005 IEEE Intelligent Transportation Systems, 2005..

[264]  Christian Wöhler,et al.  Motion-based recognition of pedestrians , 1998, Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170).

[265]  Alexandrina Rogozan,et al.  Intensity self similarity features for pedestrian detection in Far-Infrared images , 2012, 2012 IEEE Intelligent Vehicles Symposium.

[266]  Dariu Gavrila,et al.  Multi-cue Pedestrian Detection and Tracking from a Moving Vehicle , 2007, International Journal of Computer Vision.