Multi-Biometric Identification With Cascading Database Filtering

The growing scale and number of biometric deployments around the world necessitates research into technologies which facilitate fast identification queries and high discriminative power. In this context, this article presents a biometric identification system which relies on a successive pre-filtering of the potential candidate list using multiple biometric modalities, coupled with a weighted score-level information fusion. The proposed system is evaluated in a series of experiments using a compound dataset constructed from several publicly available datasets; an open-set identification scenario is considered with the enrolment database containing 1,000 chimeric instances. This evaluation shows that the proposed system exhibits a significantly increased biometric performance w.r.t. a weighted score-level or rank-level fusion based baseline, while simultaneously providing a consequential computational workload reduction in terms of penetration rate. Lastly, it is worth noting that the proposed system could be flexibly employed in any multi-biometric identification system, irrespective of the chosen types of biometric characteristics and the encoding of their extracted features.

[1]  Arun Ross,et al.  Score normalization in multimodal biometric systems , 2005, Pattern Recognit..

[2]  Arun Ross,et al.  What Else Does Your Biometric Data Reveal? A Survey on Soft Biometrics , 2016, IEEE Transactions on Information Forensics and Security.

[3]  Chin-Seng Chua,et al.  PCA-based image recombination for multimodal 2D + 3D face recognition , 2011, Image Vis. Comput..

[4]  Richard Youmaran,et al.  Towards a measure of biometric feature information , 2009, Pattern Analysis and Applications.

[5]  David Zhang,et al.  Contactless and Pose Invariant Biometric Identification Using Hand Surface , 2011, IEEE Transactions on Image Processing.

[6]  Ajay Kumar,et al.  Identifying Humans by Matching their Left Palmprint with Right Palmprint Images using Convolutional Neural Network , 2022 .

[7]  Christoph Busch,et al.  Spectral minutiae for vein pattern recognition , 2011, 2011 International Joint Conference on Biometrics (IJCB).

[8]  Arun Ross,et al.  2D ear classification based on unsupervised clustering , 2014, IEEE International Joint Conference on Biometrics.

[9]  John Daugman,et al.  Biometric decision landscapes , 2000 .

[10]  Christian Rathgeb,et al.  Efficient two-stage speaker identification based on universal background models , 2014, 2014 International Conference of the Biometrics Special Interest Group (BIOSIG).

[11]  Patrick J. Grother,et al.  Ongoing Face Recognition Vendor Test (FRVT) Part 2: Identification , 2018 .

[12]  Craig I. Watson,et al.  Studies of biometric fusion , 2006 .

[13]  Ilaiah Kavati,et al.  Search Space Reduction in Biometric Databases: A Review , 2017 .

[14]  Naoto Miura,et al.  Extraction of Finger-Vein Patterns Using Maximum Curvature Points in Image Profiles , 2007, MVA.

[15]  Patrick Schuch,et al.  Survey on features for fingerprint indexing , 2018, IET Biom..

[16]  Tanuj Kanchan,et al.  The Fingerprint Sourcebook , 2012 .

[17]  Christoph Busch,et al.  On application of bloom filters to iris biometrics , 2014, IET Biom..

[18]  Nalini Ratha,et al.  SLIC: Short-length iris codes , 2009, 2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems.

[19]  Christoph Busch,et al.  Towards Bloom filter-based indexing of iris biometric data , 2015, 2015 International Conference on Biometrics (ICB).

[20]  Kiran B. Raja,et al.  Biometrie symmetry: Implications on template protection , 2017, 2017 25th European Signal Processing Conference (EUSIPCO).

[21]  Naser Damer,et al.  Efficient, Accurate, and Rotation-Invariant Iris Code , 2017, IEEE Signal Processing Letters.

[22]  S. Shekhar,et al.  Personal Identification Using Multibiometrics Rank-Level Fusion , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[23]  Hai Thanh Nguyen,et al.  Comprehensive analysis of spectral minutiae for vein pattern recognition , 2012, IET Biom..

[24]  Sistema político,et al.  Unique Identification Authority of India , 2011 .

[25]  Christoph Busch,et al.  Computational workload in biometric identification systems: an overview , 2019, IET Biom..

[26]  Lavinia Mihaela Dinca,et al.  The Fall of One, the Rise of Many A Survey on Multi-Biometric Fusion Methods , 2017 .

[27]  Arun Ross,et al.  Block based texture analysis for iris classification and matching , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops.

[28]  J. Olsen,et al.  The European Commission , 2020, The European Union.

[29]  Arun Ross,et al.  Quality based rank-level fusion in multibiometric systems , 2009, 2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems.

[30]  Marina L. Gavrilova,et al.  Decision Fusion for Multimodal Biometrics Using Social Network Analysis , 2014, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[31]  Qiuxia Wu,et al.  Palm vein recognition based on multi-sampling and feature-level fusion , 2015, Neurocomputing.

[32]  Zicheng Guo,et al.  Parallel thinning with two-subiteration algorithms , 1989, Commun. ACM.

[33]  Andrew Beng Jin Teoh,et al.  Biometric Feature-Type Transformation: Making templates compatible for secret protection , 2015, IEEE Signal Processing Magazine.

[34]  Nalini Ratha,et al.  An efficient, two-stage iris recognition system , 2009, 2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems.

[35]  Jean-Luc Dugelay,et al.  Recent Advances in Biometric Technology for Mobile Devices , 2018, 2018 IEEE 9th International Conference on Biometrics Theory, Applications and Systems (BTAS).

[36]  Anil K. Jain,et al.  A Real-Time Matching System for Large Fingerprint Databases , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[37]  Davide Maltoni,et al.  Fingerprint Indexing Based on Minutia Cylinder-Code , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[38]  Yuhang Liu,et al.  FingerNet: An unified deep network for fingerprint minutiae extraction , 2017, 2017 IEEE International Joint Conference on Biometrics (IJCB).

[39]  Rasmus Larsen,et al.  Convolution approach for feature detection in topological skeletons obtained from vascular patterns , 2011, 2011 IEEE Workshop on Computational Intelligence in Biometrics and Identity Management (CIBIM).

[40]  Christoph Busch,et al.  Binarization of spectral histogram models: An application to efficient biometric identification , 2015, 2015 IEEE 2nd International Conference on Cybernetics (CYBCONF).

[41]  Kevin Cheng,et al.  Quality-Based Score-level Fusion for Secure and Robust Multimodal Biometrics-based Authentication on Consumer Mobile Devices , 2015, ICSEA 2015.

[42]  Alan Mink,et al.  Multimodal biometrics: issues in design and testing , 2003, ICMI '03.

[43]  Vandana Dixit Kaushik,et al.  An efficient indexing scheme for face database using modified geometric hashing , 2013, Neurocomputing.

[44]  Christoph Busch,et al.  Turning a Vulnerability into an Asset: Accelerating Facial Identification with Morphing , 2019, ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[45]  Kevin W. Bowyer,et al.  Iris recognition technology evaluated for voter registration in Somaliland , 2015 .

[46]  Christoph Busch,et al.  Benchmarking Binarisation Schemes for Deep Face Templates , 2018, 2018 25th IEEE International Conference on Image Processing (ICIP).

[47]  Sargur N. Srihari,et al.  Decision Combination in Multiple Classifier Systems , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[48]  Feng Hao,et al.  A Fast Search Algorithm for a Large Fuzzy Database , 2008, IEEE Transactions on Information Forensics and Security.

[49]  Mohamed Elhoseny,et al.  Cascade Multimodal Biometric System Using Fingerprint and Iris Patterns , 2017, AISI.

[50]  Mikhail I. Gofman,et al.  Multimodal biometrics for enhanced mobile device security , 2016, Commun. ACM.

[51]  G. Thompson,et al.  The Theory of Committees and Elections. , 1959 .

[52]  John Daugman,et al.  Searching for doppelgängers: assessing the universality of the IrisCode impostors distribution , 2016, IET Biom..

[53]  Hugo Proença,et al.  Iris biometric indexing , 2017 .

[54]  Raymond N. J. Veldhuis,et al.  Spectral minutiae: A fixed-length representation of a minutiae set , 2008, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[55]  Role of Biometric Technology in Aadhaar Enrollment , 2012 .

[56]  Christoph Busch,et al.  Database Binning and Retrieval in Multi-Fingerprint Identification Systems , 2018, 2018 IEEE International Workshop on Information Forensics and Security (WIFS).

[57]  Andreas Uhl,et al.  On Combining Selective Best Bits of Iris-Codes , 2011, BIOID.

[58]  James Philbin,et al.  FaceNet: A unified embedding for face recognition and clustering , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[59]  Anil K. Jain,et al.  Decision-Level Fusion in Fingerprint Verification , 2001, Multiple Classifier Systems.

[60]  Hugo Proença,et al.  Iris Biometrics: Indexing and Retrieving Heavily Degraded Data , 2013, IEEE Transactions on Information Forensics and Security.

[61]  Sharath Pankanti,et al.  Multi-modal biometrics for mobile authentication , 2014, IEEE International Joint Conference on Biometrics.

[62]  Arun Ross,et al.  Handbook of Multibiometrics , 2006, The Kluwer international series on biometrics.

[63]  Christian Gehrmann,et al.  Metadata filtering for user-friendly centralized biometric authentication , 2019, EURASIP J. Inf. Secur..

[64]  Arun Ross,et al.  Fingerprint mosaicking , 2002, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[65]  W. Gareth J. Howells,et al.  A review of information fusion techniques employed in iris recognition systems , 2012, Int. J. Adv. Intell. Paradigms.

[66]  Arun Ross,et al.  Guidelines for best practices in biometrics research , 2015, 2015 International Conference on Biometrics (ICB).