Chebyshev-filtered subspace iteration method free of sparse diagonalization for solving the Kohn-Sham equation

First-principles density functional theory (DFT) calculations for the electronic structure problem require a solution of the Kohn-Sham equation, which requires one to solve a nonlinear eigenvalue problem. Solving the eigenvalue problem is usually the most expensive part in DFT calculations. Sparse iterative diagonalization methods that compute explicit eigenvectors can quickly become prohibitive for large scale problems. The Chebyshev-filtered subspace iteration (CheFSI) method avoids most of the explicit computation of eigenvectors and results in a significant speedup over iterative diagonalization methods for the DFT self-consistent field (SCF) calculations. However, the original formulation of the CheFSI method utilizes a sparse iterative diagonalization at the first SCF step to provide initial vectors for subspace filtering at latter SCF steps. This diagonalization is expensive for large scale problems. We develop a new initial filtering step to avoid completely this diagonalization, thus making the CheFSI method free of sparse iterative diagonalizations at all SCF steps. Our new approach saves memory usage and can be two to three times faster than the original CheFSI method.

[1]  Renata M. Wentzcovitch,et al.  Dissociation of MgSiO3 in the Cores of Gas Giants and Terrestrial Exoplanets , 2006, Science.

[2]  T. J. Rivlin An Introduction to the Approximation of Functions , 2003 .

[3]  Yunkai Zhou,et al.  A block Chebyshev-Davidson method with inner-outer restart for large eigenvalue problems , 2010, J. Comput. Phys..

[4]  T. Arias,et al.  Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .

[5]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[6]  Yousef Saad,et al.  A Chebyshev-Davidson Algorithm for Large Symmetric Eigenproblems , 2007, SIAM J. Matrix Anal. Appl..

[7]  Yousef Saad,et al.  Rational approximation to the Fermi–Dirac function with applications in density functional theory , 2011, Numerical Algorithms.

[8]  Andreas Stathopoulos,et al.  Nearly Optimal Preconditioned Methods for Hermitian Eigenproblems under Limited Memory. Part I: Seeking One Eigenvalue , 2007, SIAM J. Sci. Comput..

[9]  Jan Mayer,et al.  A numerical evaluation of preprocessing and ILU-type preconditioners for the solution of unsymmetric sparse linear systems using iterative methods , 2009, TOMS.

[10]  Yousef Saad,et al.  Two classes of multisecant methods for nonlinear acceleration , 2009, Numer. Linear Algebra Appl..

[11]  Andreas Stathopoulos,et al.  Nearly Optimal Preconditioned Methods for Hermitian Eigenproblems Under Limited Memory. Part II: Seeking Many Eigenvalues , 2007, SIAM J. Sci. Comput..

[12]  Juan C. Meza,et al.  KSSOLV—a MATLAB toolbox for solving the Kohn-Sham equations , 2009, TOMS.

[13]  Leonard Kleinman,et al.  New Method for Calculating Wave Functions in Crystals and Molecules , 1959 .

[14]  Y. Saad,et al.  PARSEC – the pseudopotential algorithm for real‐space electronic structure calculations: recent advances and novel applications to nano‐structures , 2006 .

[15]  Y. Saad,et al.  Finite-difference-pseudopotential method: Electronic structure calculations without a basis. , 1994, Physical review letters.

[16]  Yunkai Zhou Practical acceleration for computing the HITS ExpertRank vectors , 2012, J. Comput. Appl. Math..

[17]  Yousef Saad,et al.  Evolution of magnetism in iron from the atom to the bulk. , 2006, Physical review letters.

[18]  Tiejun Li,et al.  Localized bases of eigensubspaces and operator compression , 2010, Proceedings of the National Academy of Sciences.

[19]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[20]  N. Marzari,et al.  Density functional theory in transition-metal chemistry: a self-consistent Hubbard U approach. , 2006, Physical review letters.

[21]  R. Nieminen,et al.  Real-space electronic-structure calculations: Combination of the finite-difference and conjugate-gradient methods. , 1995, Physical review. B, Condensed matter.

[22]  Taisuke Ozaki,et al.  Efficient low-order scaling method for large-scale electronic structure calculations with localized basis functions , 2010 .

[23]  R. Martin,et al.  Electronic Structure: Basic Theory and Practical Methods , 2004 .

[24]  T. Beck Real-space mesh techniques in density-functional theory , 2000, cond-mat/0006239.

[25]  L. Stixrude,et al.  Structure and Freezing of MgSiO3 Liquid in Earth's Lower Mantle , 2005, Science.

[26]  R. Dreizler,et al.  Density Functional Theory: An Advanced Course , 2011 .

[27]  Andrew V. Knyazev,et al.  Toward the Optimal Preconditioned Eigensolver: Locally Optimal Block Preconditioned Conjugate Gradient Method , 2001, SIAM J. Sci. Comput..

[28]  E Weinan,et al.  Adaptive local basis set for Kohn-Sham density functional theory in a discontinuous Galerkin framework I: Total energy calculation , 2011, J. Comput. Phys..

[29]  John P. Perdew,et al.  Optimized effective potential made simple: Orbital functionals, orbital shifts, and the exact Kohn-Sham exchange potential , 2003, cond-mat/0303396.

[30]  Ren-Cang Li,et al.  Bounding the spectrum of large Hermitian matrices , 2011 .

[31]  B. Alder,et al.  THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .

[32]  H. A. V. D. Vorsty University Utrecht a Generalized Jacobi-davidson Iteration Method for Linear Eigenvalue Problems a Generalized Jacobi-davidson Iteration Method for Linear Eigenvalue Problems , 1994 .

[34]  Gerard L. G. Sleijpen,et al.  A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM J. Matrix Anal. Appl..

[35]  Kesheng Wu,et al.  Thick-Restart Lanczos Method for Large Symmetric Eigenvalue Problems , 2000, SIAM J. Matrix Anal. Appl..

[36]  Y. Saad,et al.  Chebyshev acceleration techniques for solving nonsymmetric eigenvalue problems , 1984 .

[37]  Kesheng Wu,et al.  Dynamic Thick Restarting of the Davidson, and the Implicitly Restarted Arnoldi Methods , 1998, SIAM J. Sci. Comput..

[38]  E Weinan,et al.  Optimized local basis set for Kohn-Sham density functional theory , 2011, J. Comput. Phys..

[39]  Stefano de Gironcoli,et al.  Linear response approach to the calculation of the effective interaction parameters in the LDA + U method , 2004, cond-mat/0405160.

[40]  Taisuke Ozaki,et al.  Continued fraction representation of the Fermi-Dirac function for large-scale electronic structure calculations , 2007 .

[41]  D. Sorensen,et al.  4. The Implicitly Restarted Arnoldi Method , 1998 .

[42]  E Weinan,et al.  Linear-scaling subspace-iteration algorithm with optimally localized nonorthogonal wave functions for Kohn-Sham density functional theory , 2009 .

[43]  M. Teter,et al.  Tight-binding electronic-structure calculations and tight-binding molecular dynamics with localized orbitals. , 1994, Physical review. B, Condensed matter.

[44]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[45]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[46]  James R. Chelikowsky,et al.  CHAPTER 3 – Ab initio Pseudopotentials and the Structural Properties of Semiconductors , 1992 .

[47]  K Wu,et al.  Thick-Restart Lanczos Method for Electronic Structure Calculations , 1999 .

[48]  A. Stathopoulos,et al.  Solution of large eigenvalue problems in electronic structure calculations , 1996 .

[49]  Yousef Saad,et al.  Self-consistent-field calculations using Chebyshev-filtered subspace iteration , 2006, J. Comput. Phys..

[50]  Y. Saad,et al.  Parallel self-consistent-field calculations via Chebyshev-filtered subspace acceleration. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[51]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[52]  Wu,et al.  Higher-order finite-difference pseudopotential method: An application to diatomic molecules. , 1994, Physical review. B, Condensed matter.

[53]  Wolfram Koch,et al.  A Chemist's Guide to Density Functional Theory , 2000 .

[54]  E Program Pole-Based Approximation of the Fermi-Dirac Function , 2009 .

[55]  O. Axelsson Iterative solution methods , 1995 .

[56]  A. Lichtenstein,et al.  First-principles calculations of electronic structure and spectra of strongly correlated systems: the LDA+U method , 1997 .