The application of the sinusoidal model to lung cancer patient respiratory motion.

Accurate modeling of the respiratory cycle is important to account for the effect of organ motion on dose calculation for lung cancer patients. The aim of this study is to evaluate the accuracy of a respiratory model for lung cancer patients. Lujan et al. [Med. Phys. 26(5), 715-720 (1999)] proposed a model, which became widely used, to describe organ motion due to respiration. This model assumes that the parameters do not vary between and within breathing cycles. In this study, first, the correlation of respiratory motion traces with the model f(t) as a function of the parameter n (n = 1, 2, 3) was undertaken for each breathing cycle from 331 four-minute respiratory traces acquired from 24 lung cancer patients using three breathing types: free breathing, audio instruction, and audio-visual biofeedback. Because cos2 and cos4 had similar correlation coefficients, and cos2 and cos1 have a trigonometric relationship, for simplicity, the cos1 value was consequently used for further analysis in which the variations in mean position (z0), amplitude of motion (b) and period (tau) with and without biofeedback or instructions were investigated. For all breathing types, the parameter values, mean position (z0), amplitude of motion (b), and period (tau) exhibited significant cycle-to-cycle variations. Audio-visual biofeedback showed the least variations for all three parameters (z0, b, and tau). It was found that mean position (z0) could be approximated with a normal distribution, and the amplitude of motion (b) and period (tau) could be approximated with log normal distributions. The overall probability density function (pdf) of f(t) for each of the three breathing types was fitted with three models: normal, bimodal, and the pdf of a simple harmonic oscillator. It was found that the normal and the bimodal models represented the overall respiratory motion pdfs with correlation values from 0.95 to 0.99, whereas the range of the simple harmonic oscillator pdf correlation values was 0.71 to 0.81. This study demonstrates that the pdfs of mean position (z0), amplitude of motion (b), and period (tau) can be used for sampling to obtain more realistic respiratory traces. The overall standard deviations of respiratory motion were 0.48, 0.57, and 0.55 cm for free breathing, audio instruction, and audio-visual biofeedback, respectively.

[1]  R Mohan,et al.  Is the diaphragm motion probability density function normally distributed? , 2005, Medical physics.

[2]  Jean-Philippe Pignol,et al.  Correlation of lung tumor motion with external surrogate indicators of respiration. , 2004, International journal of radiation oncology, biology, physics.

[3]  Y. Tsunashima,et al.  Correlation between the respiratory waveform measured using a respiratory sensor and 3D tumor motion in gated radiotherapy. , 2004, International journal of radiation oncology, biology, physics.

[4]  Achim Schweikard,et al.  Respiration tracking in radiosurgery. , 2004, Medical physics.

[5]  R Mohan,et al.  Predicting respiratory motion for four-dimensional radiotherapy. , 2004, Medical physics.

[6]  Y Suh,et al.  A feasibility study on the prediction of tumour location in the lung from skin motion. , 2004, The British journal of radiology.

[7]  I. Chetty,et al.  Accounting for center-of-mass target motion using convolution methods in Monte Carlo-based dose calculations of the lung. , 2004, Medical physics.

[8]  Randall K Ten Haken,et al.  Alterations in normal liver doses due to organ motion. , 2003, International journal of radiation oncology, biology, physics.

[9]  Jun Duan,et al.  Validation of target volume and position in respiratory gated CT planning and treatment. , 2003, Medical physics.

[10]  Joos V Lebesque,et al.  Biologic and physical fractionation effects of random geometric errors. , 2003, International journal of radiation oncology, biology, physics.

[11]  Randall K Ten Haken,et al.  A method for incorporating organ motion due to breathing into 3D dose calculations in the liver: sensitivity to variations in motion. , 2003, Medical physics.

[12]  M. Ding,et al.  Dose correlation for thoracic motion in radiation therapy of breast cancer. , 2003, Medical physics.

[13]  Jun Duan,et al.  Dosimetric effect of respiration-gated beam on IMRT delivery. , 2003, Medical physics.

[14]  Indrin J Chetty,et al.  A fluence convolution method to account for respiratory motion in three-dimensional dose calculations of the liver: a Monte Carlo study. , 2003, Medical physics.

[15]  Linda Hong,et al.  The effects of intra-fraction organ motion on the delivery of intensity-modulated field with a multileaf collimator. , 2003, Medical physics.

[16]  Steve B. Jiang,et al.  An experimental investigation on intra-fractional organ motion effects in lung IMRT treatments. , 2003, Physics in medicine and biology.

[17]  M. V. van Herk,et al.  The theoretical benefit of beam fringe compensation and field size reduction for iso-normal tissue complication probability dose escalation in radiotherapy of lung cancer. , 2003, Medical physics.

[18]  P Zygmanski,et al.  A method of calculating a lung clinical target volume DVH for IMRT with intrafractional motion. , 2003, Medical physics.

[19]  Nzhde Agazaryan,et al.  The effects of tumor motion on planning and delivery of respiratory-gated IMRT. , 2003, Medical physics.

[20]  R. Mohan,et al.  Quantifying the predictability of diaphragm motion during respiration with a noninvasive external marker. , 2003, Medical physics.

[21]  R. Mohan,et al.  Quantifying the effect of intrafraction motion during breast IMRT planning and dose delivery. , 2003, Medical physics.

[22]  C. Ling,et al.  Respiration-correlated spiral CT: a method of measuring respiratory-induced anatomic motion for radiation treatment planning. , 2002, Medical physics.

[23]  Nzhde Agazaryan,et al.  An evaluation of gating window size, delivery method, and composite field dosimetry of respiratory-gated IMRT. , 2002, Medical physics.

[24]  M. V. van Herk,et al.  Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy. , 2002, International journal of radiation oncology, biology, physics.

[25]  Steve B. Jiang,et al.  Effects of intra-fraction motion on IMRT dose delivery: statistical analysis and simulation. , 2002, Physics in medicine and biology.

[26]  H Shirato,et al.  Detection of lung tumor movement in real-time tumor-tracking radiotherapy. , 2001, International journal of radiation oncology, biology, physics.

[27]  W. Stahel,et al.  Log-normal Distributions across the Sciences: Keys and Clues , 2001 .

[28]  G. Benchetrit Breathing pattern in humans: diversity and individuality. , 2000, Respiration physiology.

[29]  M. V. van Herk,et al.  The probability of correct target dosage: dose-population histograms for deriving treatment margins in radiotherapy. , 2000, International journal of radiation oncology, biology, physics.

[30]  H Shirato,et al.  Impact of respiratory movement on the computed tomographic images of small lung tumors in three-dimensional (3D) radiotherapy. , 2000, International journal of radiation oncology, biology, physics.

[31]  E. Larsen,et al.  A method for incorporating organ motion due to breathing into 3D dose calculations. , 1999, Medical physics.

[32]  K. Lam,et al.  Uncertainties in CT-based radiation therapy treatment planning associated with patient breathing. , 1996, International journal of radiation oncology, biology, physics.

[33]  Dwight Viehland,et al.  A Raman scattering study of the ferroelectric ordering in rhombohedral and tetragonal La‐modified lead zirconate titanate ceramics , 1996 .

[34]  E. Bruce,et al.  Temporal variations in the pattern of breathing. , 1996, Journal of applied physiology.

[35]  C. J. Ritchie,et al.  Predictive respiratory gating: a new method to reduce motion artifacts on CT scans. , 1994, Radiology.

[36]  H Anno,et al.  Minimum scan speeds for suppression of motion artifacts in CT. , 1992, Radiology.

[37]  S A Shea,et al.  Personnalité ventilatoire--an overview. , 1992, Respiration physiology.

[38]  D J Conces,et al.  Motion artifacts on CT simulate bronchiectasis. , 1988, AJR. American journal of roentgenology.

[39]  R M Henkelman,et al.  The double-fissure sign: a motion artifact on thin-section CT scans. , 1987, Radiology.

[40]  M A Sackner,et al.  Breathing patterns. 2. Diseased subjects. , 1983, Chest.

[41]  M A Sackner,et al.  Breathing patterns. 1. Normal subjects. , 1983, Chest.

[42]  S. K. Hilal,et al.  The tuning fork artifact in computerized tomography , 1979 .

[43]  I P PRIBAN,et al.  An analysis of some short‐term patterns of breathing in man at rest , 1963, The Journal of physiology.

[44]  K. Donald Respiration , 1962 .

[45]  R. Mohan,et al.  Motion adaptive x-ray therapy: a feasibility study , 2001, Physics in medicine and biology.

[46]  清水 伸一 Impact of respiratory movement on the computed tomographic images of small lung tumors in three-dimensional (3D) radiotherapy , 2000 .

[47]  D A Jaffray,et al.  The effects of intra-fraction organ motion on the delivery of dynamic intensity modulation. , 1998, Physics in medicine and biology.