Authentication from Matrix Conjugation

We propose an authentication scheme where forgery (a.k.a. impersonation) seems infeasible without finding the prover's long-term private key. The latter would follow from solving the conjugacy search problem in the platform (noncommutative) semigroup, i.e., to recovering X from X –1 AX and A. The platform semigroup that we suggest here is the semigroup of n × n matrices over truncated multivariable polynomials over a ring.

[1]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[2]  Alfred Menezes,et al.  Handbook of Applied Cryptography , 2018 .

[3]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[4]  Amos Fiat,et al.  Zero-knowledge proofs of identity , 1987, Journal of Cryptology.

[5]  Jang-Won Lee,et al.  New Signature Scheme Using Conjugacy Problem , 2002, IACR Cryptol. ePrint Arch..

[6]  Dima Grigoriev,et al.  Authentication schemes from actions on graphs, groups, or rings , 2010, Ann. Pure Appl. Log..

[7]  Ilia V. Ponomarenko,et al.  Constructions in public-key cryptography over matrix groups , 2005, ArXiv.

[8]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[9]  Patrick Dehornoy,et al.  Entity authentication schemes using braid word reduction , 2006, Discret. Appl. Math..

[10]  D. Goldfeld,et al.  An algebraic method for public-key cryptography , 1999 .