The Transformation of Second-Order Linear Systems into Independent Equations

The class of second-order linear dynamical systems is considered. A method and algorithm are presented to transform any system with n degrees of freedom into n independent second-order equations. The conversion utilizes a real, invertible but nonlinear mapping and is applicable to practically every linear system. Two examples from earthquake engineering are provided to indicate the utility of this approach.

[1]  Tetsuji Itoh Damped vibration mode superposition method for dynamic response analysis , 1973 .

[2]  Wanping Zheng,et al.  Quantification of non-proportionality of damping in discrete vibratory systems , 2000 .

[3]  P. Lancaster,et al.  Factorization of selfadjoint matrix polynomials with constant signature , 1982 .

[4]  M. Friswell,et al.  CO-ORDINATE TRANSFORMATIONS FOR SECOND ORDER SYSTEMS. PART II: ELEMENTARY STRUCTURE-PRESERVING TRANSFORMATIONS , 2002 .

[5]  Wanping Zheng,et al.  Evaluation of damping non-proportionality using identified modal information , 2001 .

[6]  James Demmel,et al.  LAPACK Users' Guide, Third Edition , 1999, Software, Environments and Tools.

[7]  Volker Mehrmann,et al.  Structured Polynomial Eigenvalue Problems: Good Vibrations from Good Linearizations , 2006, SIAM J. Matrix Anal. Appl..

[8]  K. Foss COORDINATES WHICH UNCOUPLE THE EQUATIONS OF MOTION OF DAMPED LINEAR DYNAMIC SYSTEMS , 1956 .

[9]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[10]  Anil K. Chopra,et al.  Dynamics of Structures: Theory and Applications to Earthquake Engineering , 1995 .

[11]  Thomas K. Caughey,et al.  Analysis of Linear Nonconservative Vibrations , 1995 .

[12]  M. Rayner,et al.  Mathematics for the Physical Sciences , 1969 .

[13]  Matthias Morzfeld,et al.  The decoupling of damped linear systems in free or forced vibration , 2010 .

[14]  Karl Meerbergen,et al.  The Quadratic Eigenvalue Problem , 2001, SIAM Rev..

[15]  James K. Knowles,et al.  On the approximation of damped linear dynamical systems , 2006 .

[16]  M. Morzfeld,et al.  Diagonal dominance of damping and the decoupling approximation in linear vibratory systems , 2009 .

[17]  Andres Soom,et al.  Mechanical Vibration Analysis and Computation , 1989 .

[18]  M. Chu,et al.  Total decoupling of general quadratic pencils, Part II: Structure preserving isospectral flows , 2008 .

[19]  James M. Kelly,et al.  Seismic response of the superstructure and attached equipment in a base‐isolated building , 1989 .

[20]  Ray W. Clough,et al.  Earthquake response analysis considering non‐proportional damping , 1976 .

[21]  J. Dormand,et al.  A family of embedded Runge-Kutta formulae , 1980 .

[22]  C. Loan,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix , 1978 .

[23]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[24]  M. Friswell,et al.  CO-ORDINATE TRANSFORMATIONS FOR SECOND ORDER SYSTEMS. PART I: GENERAL TRANSFORMATIONS , 2002 .

[25]  Nicholas J. Higham,et al.  Backward Error of Polynomial Eigenproblems Solved by Linearization , 2007, SIAM J. Matrix Anal. Appl..

[26]  Rajendra Singh,et al.  Quantification of the extent of non-proportional viscous damping in discrete vibratory systems , 1986 .

[27]  W. Gawronski Dynamics and control of structures : a modal approach , 1998 .

[28]  Chong-Won Lee,et al.  Dynamic reanalysis of weakly non-proportionally damped systems , 1986 .

[29]  A. Sestieri,et al.  Analysis Of Errors And Approximations In The Use Of Modal Co-Ordinates , 1994 .

[30]  Gene H. Golub,et al.  Matrix computations , 1983 .

[31]  F. R. Gantmakher The Theory of Matrices , 1984 .

[32]  Stephen F. Felszeghy,et al.  On Uncoupling and Solving the Equations of Motion of Vibrating Linear Discrete Systems , 1993 .

[33]  Firdaus E. Udwadia,et al.  Nonclassically Damped Dynamic Systems: An Iterative Approach , 1990 .

[34]  George C. Lee,et al.  An Index of Damping Non-Proportionality for Discrete Vibrating Systems , 1994 .

[35]  J Xu A synthesis formulation of explicit damping matrix for non-classically damped systems☆ , 2004 .

[36]  Jai-Hyuk Hwang,et al.  On the Approximate Solution of Nonclassically Damped Linear Systems under Random Excitations , 1993 .

[37]  C. Ventura,et al.  MODAL ANALYSIS OF NON-CLASSICALLY DAMPED LINEAR SYSTEMS , 1986 .

[38]  Matthias Morzfeld,et al.  The decoupling of damped linear systems in oscillatory free vibration , 2009 .

[39]  Ilʹi︠a︡ Izrailevich Blekhman,et al.  Synchronization in science and technology , 1988 .

[40]  James M. Kelly,et al.  Non‐classical damping in dynamic analysis of base‐isolated structures with internal equipment , 1988 .

[41]  J. S. Kim,et al.  Characteristics of Modal Coupling in Nonclassically Damped Systems Under Harmonic Excitation , 1994 .

[42]  James Demmel,et al.  Applied Numerical Linear Algebra , 1997 .

[43]  Daniel T. Kawano,et al.  The decoupling of defective linear dynamical systems in free motion , 2011 .

[44]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[45]  Takeru Igusa,et al.  Dynamic characteristics of non‐classically damped structures , 1991 .

[46]  Peter Lancaster,et al.  DIAGONALIZABLE QUADRATIC EIGENVALUE PROBLEMS , 2009 .

[47]  W. Brogan Modern Control Theory , 1971 .

[48]  Peter Lancaster,et al.  Lambda-matrices and vibrating systems , 2002 .

[49]  M. Chu,et al.  Total decoupling of general quadratic pencils, Part I: Theory , 2008 .

[50]  F. Ma,et al.  The decoupling of damped linear systems in configuration and state spaces , 2011 .

[51]  Uwe Prells,et al.  General isospectral flows for linear dynamic systems , 2004 .

[52]  T. Caughey,et al.  Classical Normal Modes in Damped Linear Dynamic Systems , 1960 .

[53]  Atul Bhaskar,et al.  Estimates of errors in the frequency response of non-classically damped systems , 1995 .

[54]  S. M. Shahruz,et al.  Approximate Decoupling of the Equations of Motion of Linear Underdamped Systems , 1988 .

[55]  L. Meirovitch Analytical Methods in Vibrations , 1967 .

[56]  D. L. Cronin,et al.  Approximation for Determining Harmonically Excited Response of Nonclassically Damped Systems , 1976 .