Bifurcation investigations of coupled damage-plasticity models for concrete materials

Abstract This communication addresses the localization properties of a coupled damage-plasticity formulation for concrete materials to provide information on the onset of material bifurcation and the critical failure modes. Two separate loading functions are considered, one for damage and one for plasticity. A three-invariant yield surface is used to model plasticity and to consider the significant role of the intermediate principal stress and the Lode parameter on the failure of concrete materials. A non-associated flow rule is employed to control inelastic dilatancy. To model degradation of the elastic stiffness a scalar-valued isotropic damage formulation is introduced based on the total strain energy formulation that is used. Monotonic and cyclic uniaxial compression experiments are performed on concrete cylinders under displacement control and photogrammetric images are collected for Digital Image Correlation Analysis. The triaxial based damage-plasticity model is calibrated based on these experimental observations and is implemented in Matlab. Extensive localization analysis studies are performed at the constitutive level for representative load scenarios in the form of non-positive properties of the elastoplastic-damage localization tensor. The contributions of damage, plasticity and coupled damage-plasticity are explored and compared for classical Boltzmann and Micropolar Cosserat continuum formulations.

[1]  Susan Eitelman,et al.  Matlab Version 6.5 Release 13. The MathWorks, Inc., 3 Apple Hill Dr., Natick, MA 01760-2098; 508/647-7000, Fax 508/647-7001, www.mathworks.com , 2003 .

[2]  Kaspar Willam,et al.  A coupled elastoplastic damage model for geomaterials , 2004 .

[3]  C. Chree Sur la théorie de l'élasticité , 1901 .

[4]  J. Červenka,et al.  Three dimensional combined fracture-plastic material model for concrete , 2008 .

[5]  F. Cosserat,et al.  Sur la théorie de l'élasticité. Premier mémoire , 1896 .

[6]  Paul Steinmann,et al.  Micropolar elastoplasticity and its role in localization , 1993 .

[7]  H. Altenbach,et al.  Foundations of Micropolar Mechanics , 2012 .

[8]  Peter Grassl,et al.  CDPM2: A damage-plasticity approach to modelling the failure of concrete , 2013, 1307.6998.

[9]  Milan Jirásek,et al.  Damage-plastic model for concrete failure , 2006 .

[10]  J. Rice,et al.  CONDITIONS FOR THE LOCALIZATION OF DEFORMATION IN PRESSURE-SENSITIVE DILATANT MATERIALS , 1975 .

[11]  N. S. Ottosen,et al.  Properties of discontinuous bifurcation solutions in elasto-plasticity , 1991 .

[12]  R. Borst SIMULATION OF STRAIN LOCALIZATION: A REAPPRAISAL OF THE COSSERAT CONTINUUM , 1991 .

[13]  T. Hueckel,et al.  Uniqueness and localization. II, Coupled elastoplasticity , 1991 .

[14]  Kaspar Willam,et al.  Localized failure analysis in elastoplastic Cosserat continua , 1998 .

[15]  G. Etse,et al.  Geometrical localization analysis of gradient-dependent parabolic Drucker -Prager elastoplasticity , 2006 .

[16]  E. Cosserat,et al.  Théorie des Corps déformables , 1909, Nature.

[17]  Ziad N. Taqieddin,et al.  Anisotropic damage-plasticity model for concrete , 2008 .

[18]  Paul Steinmann,et al.  Finite-Element Analysis of Elastoplastic Discontinuities , 1994 .

[19]  K. Willam,et al.  Localization Properties of Generalized Drucker-Prager Elastoplasticity , 2001 .

[20]  Kaspar Willam,et al.  LOCALIZATION CHARACTERISTICS OF TRIAXIAL CONCRETE MODEL , 1999 .

[21]  M. Jirásek,et al.  Plastic model with non‐local damage applied to concrete , 2006 .

[22]  K. Willam,et al.  Triaxial failure criterion for concrete and its generalization , 1995 .

[23]  Egidio Rizzi,et al.  Localization analysis of elastic degradation with application to scalar damage , 1995 .

[24]  David V. Phillips,et al.  A simplified isotropic damage model for concrete under bi-axial stress states , 2005 .

[25]  Egidio Rizzi,et al.  On the formulation of anisotropic elastic degradation. I. Theory based on a pseudo-logarithmic damage tensor rate , 2001 .

[26]  Davide Bigoni,et al.  Uniqueness and localization—I. Associative and non-associative elastoplasticity , 1991 .

[27]  Jeeho Lee,et al.  Plastic-Damage Model for Cyclic Loading of Concrete Structures , 1998 .

[28]  E. Kondo Characterizing the evolving internal length scale in strain localization for cosserat media , 2010 .

[29]  J. Rice,et al.  A note on some features of the theory of localization of deformation , 1980 .

[30]  R. Hill Acceleration waves in solids , 1962 .