Positivity-Preserving Finite Difference Weighted ENO Schemes with Constrained Transport for Ideal Magnetohydrodynamic Equations

In this paper, we utilize the maximum-principle-preserving flux limiting technique, originally designed for high order weighted essentially non-oscillatory (WENO) methods for scalar hyperbolic conservation laws, to develop a class of high order positivity-preserving finite difference WENO methods for the ideal magnetohydrodynamic (MHD) equations. Our schemes, under the constrained transport (CT) framework, can achieve high order accuracy, a discrete divergence-free condition and positivity of the numerical solution simultaneously. Numerical examples in 1D, 2D and 3D are provided to demonstrate the performance of the proposed method.

[1]  Dinshaw S. Balsara,et al.  Self-adjusting, positivity preserving high order schemes for hydrodynamics and magnetohydrodynamics , 2012, J. Comput. Phys..

[2]  Dinshaw S. Balsara,et al.  Maintaining Pressure Positivity in Magnetohydrodynamic Simulations , 1999 .

[3]  Yuan Liu,et al.  High order parametrized maximum-principle-preserving and positivity-preserving WENO schemes on unstructured meshes , 2014, 2014 IEEE 41st International Conference on Plasma Sciences (ICOPS) held with 2014 IEEE International Conference on High-Power Particle Beams (BEAMS).

[4]  Liwei Xu,et al.  Positivity-preserving DG and central DG methods for ideal MHD equations , 2013, J. Comput. Phys..

[5]  Sergey Yakovlev,et al.  Locally divergence-free central discontinuous Galerkin methods for ideal MHD equations , 2013, J. Comput. Sci..

[6]  J. Hawley,et al.  Simulation of magnetohydrodynamic flows: A Constrained transport method , 1988 .

[7]  P. Roe,et al.  A Solution-Adaptive Upwind Scheme for Ideal Magnetohydrodynamics , 1999 .

[8]  Andrea Mignone,et al.  A second-order unsplit Godunov scheme for cell-centered MHD: The CTU-GLM scheme , 2009, J. Comput. Phys..

[9]  Sergey Yakovlev,et al.  Central discontinuous Galerkin methods for ideal MHD equations with the exactly divergence-free magnetic field , 2011, J. Comput. Phys..

[10]  Manuel Torrilhon,et al.  Locally Divergence-preserving Upwind Finite Volume Schemes for Magnetohydrodynamic Equations , 2005, SIAM J. Sci. Comput..

[11]  Chao Liang,et al.  Parametrized Maximum Principle Preserving Flux Limiters for High Order Schemes Solving Multi-Dimensional Scalar Hyperbolic Conservation Laws , 2014, J. Sci. Comput..

[12]  D. Balsara,et al.  A Staggered Mesh Algorithm Using High Order Godunov Fluxes to Ensure Solenoidal Magnetic Fields in Magnetohydrodynamic Simulations , 1999 .

[13]  Nikolaus A. Adams,et al.  Positivity-preserving method for high-order conservative schemes solving compressible Euler equations , 2013, J. Comput. Phys..

[14]  Michael Dumbser,et al.  Efficient, high accuracy ADER-WENO schemes for hydrodynamics and divergence-free magnetohydrodynamics , 2008, Journal of Computational Physics.

[15]  P. Janhunen,et al.  A Positive Conservative Method for Magnetohydrodynamics Based on HLL and Roe Methods , 2000 .

[16]  Zhengfu Xu,et al.  A parametrized maximum principle preserving flux limiter for finite difference RK-WENO schemes with applications in incompressible flows , 2013, J. Comput. Phys..

[17]  Zhengfu Xu Parametrized maximum principle preserving flux limiters for high order schemes solving hyperbolic conservation laws: one-dimensional scalar problem , 2014, Math. Comput..

[18]  U. Ziegler,et al.  A central-constrained transport scheme for ideal magnetohydrodynamics , 2004 .

[19]  K. Waagan,et al.  A positive MUSCL-Hancock scheme for ideal magnetohydrodynamics , 2009, J. Comput. Phys..

[20]  Paul R. Woodward,et al.  A Simple Finite Difference Scheme for Multidimensional Magnetohydrodynamical Equations , 1998 .

[21]  Bertram Taetz,et al.  A High-Order Unstaggered Constrained-Transport Method for the Three-Dimensional Ideal Magnetohydrodynamic Equations Based on the Method of Lines , 2013, SIAM J. Sci. Comput..

[22]  P. Londrillo,et al.  On the divergence-free condition in Godunov-type schemes for ideal magnetohydrodynamics: the upwind constrained transport method , 2004 .

[23]  Hans d,et al.  Multi-dimensional upwind constrained transport on unstructured grids for 'shallow water' magnetohydrodynamics , 2001 .

[24]  Chi-Wang Shu,et al.  Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..

[25]  James M. Stone,et al.  An unsplit Godunov method for ideal MHD via constrained transport in three dimensions , 2007, J. Comput. Phys..

[26]  Zhengfu Xu,et al.  Parametrized Positivity Preserving Flux Limiters for the High Order Finite Difference WENO Scheme Solving Compressible Euler Equations , 2014, J. Sci. Comput..

[27]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[28]  Xiangxiong Zhang,et al.  On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes , 2010, J. Comput. Phys..

[29]  J. Rossmanith High-Order Discontinuous Galerkin Finite Element Methods with Globally Divergence-Free Constrained Transport for Ideal MHD , 2013, 1310.4251.

[30]  Zhiliang Xu,et al.  Divergence-Free WENO Reconstruction-Based Finite Volume Scheme for Solving Ideal MHD Equations on Triangular Meshes , 2011, 1110.0860.

[31]  James A. Rossmanith,et al.  Finite difference weighted essentially non-oscillatory schemes with constrained transport for 2D ideal Magnetohydrodynamics , 2013, ICOPS 2013.

[32]  G. Tóth The ∇·B=0 Constraint in Shock-Capturing Magnetohydrodynamics Codes , 2000 .

[33]  P. Londrillo,et al.  High-Order Upwind Schemes for Multidimensional Magnetohydrodynamics , 1999, astro-ph/9910086.

[34]  Liwei Xu,et al.  Arbitrary order exactly divergence-free central discontinuous Galerkin methods for ideal MHD equations , 2012, J. Comput. Phys..

[35]  Manuel Torrilhon,et al.  A Constrained Transport Upwind Scheme for Divergence-free Advection , 2003 .

[36]  Guang-Shan Jiang,et al.  A High-Order WENO Finite Difference Scheme for the Equations of Ideal Magnetohydrodynamics , 1999 .

[37]  Bertram Taetz,et al.  An unstaggered constrained transport method for the 3D ideal magnetohydrodynamic equations , 2010, J. Comput. Phys..

[38]  Dinshaw Balsara,et al.  Second-Order-accurate Schemes for Magnetohydrodynamics with Divergence-free Reconstruction , 2003, astro-ph/0308249.

[39]  J. Brackbill,et al.  The Effect of Nonzero ∇ · B on the numerical solution of the magnetohydrodynamic equations☆ , 1980 .

[40]  Kenneth G. Powell,et al.  AN APPROXIMATE RIEMANN SOLVER FOR MAGNETOHYDRODYNAMICS (That Works in More than One Dimension) , 1994 .

[41]  Francesco Miniati,et al.  A Divergence-free Upwind Code for Multidimensional Magnetohydrodynamic Flows , 1998 .

[42]  Chi-Wang Shu,et al.  Locally Divergence-Free Discontinuous Galerkin Methods for MHD Equations , 2005, J. Sci. Comput..

[43]  Zhengfu Xu,et al.  High order parametrized maximum-principle-preserving and positivity-preserving WENO schemes on unstructured meshes , 2014 .

[44]  James A. Rossmanith,et al.  An Unstaggered, High-Resolution Constrained Transport Method for Magnetohydrodynamic Flows , 2006, SIAM J. Sci. Comput..