Additive empirical force field for hexopyranose monosaccharides

We present an all‐atom additive empirical force field for the hexopyranose monosaccharide form of glucose and its diastereomers allose, altrose, galactose, gulose, idose, mannose, and talose. The model is developed to be consistent with the CHARMM all‐atom biomolecular force fields, and the same parameters are used for all diastereomers, including both the α‐ and β‐anomers of each monosaccharide. The force field is developed in a hierarchical manner and reproduces the gas‐phase and condensed‐phase properties of small‐molecule model compounds corresponding to fragments of pyranose monosaccharides. The resultant parameters are transferred to the full pyranose monosaccharides, and additional parameter development is done to achieve a complete hexopyranose monosaccharide force field. Parametrization target data include vibrational frequencies, crystal geometries, solute–water interaction energies, molecular volumes, heats of vaporization, and conformational energies, including those for over 1800 monosaccharide conformations at the MP2/cc‐pVTZ//MP2/6‐31G(d) level of theory. Although not targeted during parametrization, free energies of aqueous solvation for the model compounds compare favorably with experimental values. Also well‐reproduced are monosaccharide crystal unit cell dimensions and ring pucker, densities of concentrated aqueous glucose systems, and the thermodynamic and dynamic properties of the exocyclic torsion in dilute aqueous systems. The new parameter set expands the CHARMM additive force field to allow for simulation of heterogeneous systems that include hexopyranose monosaccharides in addition to proteins, nucleic acids, and lipids. © 2008 Wiley Periodicals, Inc. J Comput Chem 2008

[1]  B. Brooks,et al.  Effect of Electrostatic Force Truncation on Interfacial and Transport Properties of Water , 1996 .

[2]  M. Plesset,et al.  Note on an Approximation Treatment for Many-Electron Systems , 1934 .

[3]  J. L. Willett,et al.  Computational studies on carbohydrates: in vacuo studies using a revised AMBER force field, AMB99C, designed for alpha-(1-->4) linkages. , 2000, Carbohydrate research.

[4]  Alexander D. MacKerell,et al.  Combined ab initio/empirical approach for optimization of Lennard–Jones parameters , 1998 .

[5]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[6]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[7]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[8]  Richard W. Pastor,et al.  Molecular Dynamics Simulations of Octyl Glucoside Micelles: Dynamic Properties , 2001 .

[9]  Hanoch Senderowitz,et al.  Carbohydrates: United Atom AMBER* Parameterization of Pyranoses and Simulations Yielding Anomeric Free Energies , 1996 .

[10]  Karl N. Kirschner,et al.  Solvent interactions determine carbohydrate conformation , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Alexander D. MacKerell Empirical force fields for biological macromolecules: Overview and issues , 2004, J. Comput. Chem..

[12]  C. Bertozzi,et al.  Glycans in cancer and inflammation — potential for therapeutics and diagnostics , 2005, Nature Reviews Drug Discovery.

[13]  M. Galbe,et al.  Bio-ethanol--the fuel of tomorrow from the residues of today. , 2006, Trends in biotechnology.

[14]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[15]  Alexander D. MacKerell,et al.  Polyunsaturated fatty acids in lipid bilayers: intrinsic and environmental contributions to their unique physical properties. , 2002, Journal of the American Chemical Society.

[16]  R. Swendsen,et al.  THE weighted histogram analysis method for free‐energy calculations on biomolecules. I. The method , 1992 .

[17]  D. Chandler,et al.  Introduction To Modern Statistical Mechanics , 1987 .

[18]  B. Brooks,et al.  Langevin dynamics of peptides: The frictional dependence of isomerization rates of N‐acetylalanyl‐N′‐methylamide , 1992, Biopolymers.

[19]  Alexander D. MacKerell,et al.  Extending the treatment of backbone energetics in protein force fields: Limitations of gas‐phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations , 2004, J. Comput. Chem..

[20]  Roland Stenutz,et al.  Correlated C-C and C-O bond conformations in saccharide hydroxymethyl groups: parametrization and application of redundant 1H-1H, 13C-1H, and 13C-13C NMR J-couplings. , 2004, Journal of the American Chemical Society.

[21]  Julian Tirado-Rives,et al.  Potential energy functions for atomic-level simulations of water and organic and biomolecular systems. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Karl Nicholas Kirschner,et al.  GLYCAM06: A generalizable biomolecular force field. Carbohydrates , 2008, J. Comput. Chem..

[23]  Michael Schlenkrich,et al.  Force field parameters for carbohydrates , 1996 .

[24]  Russell D. Johnson,et al.  NIST Computational Chemistry Comparison and Benchmark Database , 2005 .

[25]  Giorgio Sesti,et al.  Pathophysiology of insulin resistance. , 2006, Best practice & research. Clinical endocrinology & metabolism.

[26]  Bernard R. Brooks,et al.  Solvent-Induced Forces between Two Hydrophilic Groups , 1994 .

[27]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[28]  Gérard Vergoten,et al.  Molecular force field development for saccharides using the SPASIBA spectroscopic potential. Force field parameters for α-d-glucose , 1997 .

[29]  Alexander D. MacKerell,et al.  Additive and Classical Drude Polarizable Force Fields for Linear and Cyclic Ethers. , 2007, Journal of chemical theory and computation.

[30]  Kenneth M. Merz,et al.  A force field for monosaccharides and (1 → 4) linked polysaccharides , 1994, J. Comput. Chem..

[31]  D. Richel,et al.  LPS signal transduction: the picture is becoming more complex. , 2004, Current topics in medicinal chemistry.

[32]  Robert Zwanzig,et al.  STATISTICAL ERROR DUE TO FINITE TIME AVERAGING IN COMPUTER EXPERIMENTS. , 1969 .

[33]  William L. Jorgensen,et al.  OPLS all‐atom force field for carbohydrates , 1997 .

[34]  J. L. Willett,et al.  Computational studies on carbohydrates: solvation studies on maltose and cyclomaltooligosaccharides (cyclodextrins) using a DFT/ab initio-derived empirical force field, AMB99C. , 2000, Carbohydrate research.

[35]  Wilfred F. van Gunsteren,et al.  An improved OPLS–AA force field for carbohydrates , 2002, J. Comput. Chem..

[36]  Donald G Truhlar,et al.  SM6:  A Density Functional Theory Continuum Solvation Model for Calculating Aqueous Solvation Free Energies of Neutrals, Ions, and Solute-Water Clusters. , 2005, Journal of chemical theory and computation.

[37]  D. Cremer,et al.  General definition of ring puckering coordinates , 1975 .

[38]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[39]  K. Keegstra,et al.  Biosynthesis of plant cell wall polysaccharides - a complex process. , 2006, Current opinion in plant biology.

[40]  Chris Oostenbrink,et al.  A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force‐field parameter sets 53A5 and 53A6 , 2004, J. Comput. Chem..

[41]  Bernard R. Brooks,et al.  New spherical‐cutoff methods for long‐range forces in macromolecular simulation , 1994, J. Comput. Chem..

[42]  Peter T. Cummings,et al.  Microstructure of ambient and supercritical water. Direct comparison between simulation and neutron scattering experiments , 1996 .

[43]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[44]  R. DeFronzo,et al.  Pathogenesis of type 2 diabetes mellitus. , 2004, The Medical clinics of North America.

[45]  Alexander D. MacKerell,et al.  An all-atom empirical energy function for the simulation of nucleic acids , 1995 .

[46]  Alexander D. MacKerell,et al.  Importance of attractive van der Waals contribution in empirical energy function models for the heat of vaporization of polar liquids , 1991 .

[47]  Alexander D. MacKerell,et al.  All‐atom empirical force field for nucleic acids: II. Application to molecular dynamics simulations of DNA and RNA in solution , 2000 .

[48]  Edward M. Eyring,et al.  Molecular Dynamics and Kinetics of Monosaccharides in Solution. A Broadband Ultrasonic Relaxation Study , 2000 .

[49]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[50]  A. Watts,et al.  Membrane structure and dynamics. , 1989, Current opinion in cell biology.

[51]  Kevin J. Naidoo,et al.  Carbohydrate solution simulations: Producing a force field with experimentally consistent primary alcohol rotational frequencies and populations , 2002, J. Comput. Chem..

[52]  Alexander D. MacKerell,et al.  Molecular dynamics simulation of unsaturated lipid bilayers at low hydration: parameterization and comparison with diffraction studies. , 1997, Biophysical journal.

[53]  Karl-Heinz Ott,et al.  Parametrization of GROMOS force field for oligosaccharides and assessment of efficiency of molecular dynamics simulations , 1996, J. Comput. Chem..

[54]  Benoît Roux,et al.  Hydration of Amino Acid Side Chains: Nonpolar and Electrostatic Contributions Calculated from Staged Molecular Dynamics Free Energy Simulations with Explicit Water Molecules , 2004 .

[55]  Jenn-Huei Lii,et al.  Alcohols, ethers, carbohydrates, and related compounds. IV. carbohydrates , 2003, J. Comput. Chem..

[56]  Udo Kaatze,et al.  Molecular Dynamics of Carbohydrate Aqueous Solutions. Dielectric Relaxation as a Function of Glucose and Fructose Concentration , 2001 .

[57]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[58]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[59]  John E. Enderby,et al.  Neutron diffraction studies on aqueous solutions of glucose , 2003 .

[60]  Robert J. Woods,et al.  Molecular Mechanical and Molecular Dynamic Simulations of Glycoproteins and Oligosaccharides. 1. GLYCAM_93 Parameter Development , 1995 .

[61]  G. R. Luckhurst,et al.  The Molecular Dynamics of Liquid Crystals , 1994 .

[62]  S. Nosé A molecular dynamics method for simulations in the canonical ensemble , 1984 .

[63]  A. Rappé,et al.  Ab Initio Calculation of Nonbonded Interactions: Are We There Yet? , 2000 .

[64]  Alexander D. MacKerell,et al.  Ab initio modeling of glycosyl torsions and anomeric effects in a model carbohydrate: 2-ethoxy tetrahydropyran. , 2007, Biophysical journal.

[65]  A. Helenius,et al.  Roles of N-linked glycans in the endoplasmic reticulum. , 2004, Annual review of biochemistry.

[66]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[67]  Leo Radom,et al.  Harmonic Vibrational Frequencies: An Evaluation of Hartree−Fock, Møller−Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors , 1996 .

[68]  Rengaswami Chandrasekaran,et al.  Conformation of Carbohydrates , 1998 .

[69]  Lothar Schäfer,et al.  Ab initio studies of structural features not easily amenable to experiment: Part 31. Conformational analysis and molecular structures of ethylene glycol , 1984 .

[70]  Olgun Guvench,et al.  Quantum mechanical analysis of 1,2-ethanediol conformational energetics and hydrogen bonding. , 2006, The journal of physical chemistry. A.

[71]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[72]  F. Allen The Cambridge Structural Database: a quarter of a million crystal structures and rising. , 2002, Acta crystallographica. Section B, Structural science.

[73]  P. C. Hariharan,et al.  The influence of polarization functions on molecular orbital hydrogenation energies , 1973 .

[74]  Alexander D. MacKerell,et al.  All‐atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data , 2000 .

[75]  John H. Andreae,et al.  Ultrasonic Relaxation Processes in Pure Liquids , 1951 .

[76]  Alexander D. MacKerell,et al.  An Improved Empirical Potential Energy Function for Molecular Simulations of Phospholipids , 2000 .

[77]  Alexander D. MacKerell,et al.  An ab initio study on the torsional surface of alkanes and its effect on molecular simulations of alkanes and a DPPC bilayer. , 2005, The journal of physical chemistry. B.

[78]  Alan J. Benesi,et al.  Trends in molecular motion for a series of glucose oligomers and the corresponding polymer pullulan as measured by carbon-13 NMR relaxation , 1985 .

[79]  D. Peters,et al.  Carbohydrates for fermentation , 2006, Biotechnology journal.

[80]  Alexander D. MacKerell,et al.  Polarizable empirical force field for alkanes based on the classical Drude oscillator model. , 2005, The journal of physical chemistry. B.

[81]  Michael R. Shirts,et al.  Extremely precise free energy calculations of amino acid side chain analogs: Comparison of common molecular mechanics force fields for proteins , 2003 .

[82]  I. Boneca,et al.  The role of peptidoglycan in pathogenesis. , 2005, Current opinion in microbiology.

[83]  B. Brooks,et al.  Constant pressure molecular dynamics simulation: The Langevin piston method , 1995 .