Transiting Exoplanet Studies and Community Targets for JWST's Early Release Science Program

The James Webb Space Telescope (JWST) will likely revolutionize transiting exoplanet atmospheric science, due to a combination of its capability for continuous, long duration observations and its larger collecting area, spectral coverage, and spectral resolution compared to existing space-based facilities. However, it is unclear precisely how well JWST will perform and which of its myriad instruments and observing modes will be best suited for transiting exoplanet studies. In this article, we describe a prefatory JWST Early Release Science (ERS) Cycle 1 program that focuses on testing specific observing modes to quickly give the community the data and experience it needs to plan more efficient and successful transiting exoplanet characterization programs in later cycles. We propose a multi-pronged approach wherein one aspect of the program focuses on observing transits of a single target with all of the recommended observing modes to identify and understand potential systematics, compare transmission spectra at overlapping and neighboring wavelength regions, confirm throughputs, and determine overall performances. In our search for transiting exoplanets that are well suited to achieving these goals, we identify 12 objects (dubbed "community targets") that meet our defined criteria. Currently, the most favorable target is WASP-62b because of its large predicted signal size, relatively bright host star, and location in JWST's continuous viewing zone. Since most of the community targets do not have well-characterized atmospheres, we recommend initiating preparatory observing programs to determine the presence of obscuring clouds/hazes within their atmospheres. Measurable spectroscopic features are needed to establish the optimal resolution and wavelength regions for exoplanet characterization. Other initiatives from our proposed ERS program include testing the instrument brightness limits and performing phase-curve observations. The latter are a unique challenge compared to transit observations because of their significantly longer durations. Using only a single mode, we propose to observe a full-orbit phase curve of one of the previously characterized, short-orbital-period planets to evaluate the facility-level aspects of long, uninterrupted time-series observations.

Gregory S. Tucker | Drake Deming | Pierre-Olivier Lagage | Mercedes Lopez-Morales | Charles Beichman | David Ehrenreich | Stephan M. Birkmann | Kevin Heng | Daniel Angerhausen | Evgenya L. Shkolnik | Kevin B. Stevenson | Joanna K. Barstow | Avi Shporer | Avi M. Mandell | Tiffany Kataria | Diana Dragomir | Antonio Garcia Munoz | Marco Rocchetto | Joseph Harrington | Nikku Madhusudhan | Thomas P. Greene | John E. Gizis | Jeff A. Valenti | Jonathan J. Fortney | Nicolas B. Cowan | Jacob L. Bean | Laura Kreidberg | Michael R. Line | Neale P. Gibson | Eric Agol | Jonathan Fraine | Hannah R. Wakeford | Patricio E. Cubillos | Everett Schlawin | Nicolas Crouzet | David K. Sing | Eliza M.-R. Kempton | Julien de Wit | Brian M. Kilpatrick | Caroline V. Morley | Kamen O. Todorov | Joshua D. Lothringer | Heather Knutson | Nikole K. Lewis | Jean-Michel Desert | David Charbonneau | Adam Burrows | S. M. Curry | J. E. Krick | Paul A. Dalba | Rene Doyon | David Lafreniere | G. Tucker | N. Crouzet | E. Agol | A. Burrows | J. Gizis | Avi Shporer | J. Valenti | D. Ehrenreich | J. Fortney | R. Doyon | C. Beichman | T. Greene | P. Lagage | J. Bean | M. López-Morales | D. Charbonneau | E. Schlawin | D. Deming | J. Wit | K. Heng | H. Knutson | J. Lothringer | D. Dragomir | D. Angerhausen | J. Krick | N. Lewis | M. Line | C. Morley | N. Cowan | K. Stevenson | P. Dalba | T. Kataria | J. Harrington | E. Kempton | N. Gibson | A. Muñoz | A. Mandell | N. Madhusudhan | S. Curry | J. Fraine | E. Shkolnik | S. Birkmann | P. Cubillos | D. Sing | L. Kreidberg | J. Barstow | H. Wakeford | M. Rocchetto | B. Kilpatrick | K. Todorov | D. Lafreniére | J. Désert

[1]  Mark Clampin,et al.  Transiting Exoplanet Simulations with the James Webb Space Telescope , 2015, 1507.02655.

[2]  Marcell Tessenyi,et al.  Probing the extreme planetary atmosphere of WASP-12b , 2012, 1205.4736.

[3]  R. G. West,et al.  Transiting hot Jupiters from WASP-South, Euler and TRAPPIST : WASP-95b to WASP-101b , 2013, 1310.5630.

[4]  Nikole K. Lewis,et al.  WARM SPITZER PHOTOMETRY OF THREE HOT JUPITERS: HAT-P-3b, HAT-P-4b AND HAT-P-12b , 2013, 1305.0833.

[5]  Drake Deming,et al.  A Search for a Sub-Earth-Sized Companion to GJ 436 and a Novel Method to Calibrate Warm Spitzer IRAC Observations , 2010, 1009.0755.

[6]  Drake Deming,et al.  SPITZER SECONDARY ECLIPSES OF THE DENSE, MODESTLY-IRRADIATED, GIANT EXOPLANET HAT-P- 20 b ?> USING PIXEL-LEVEL DECORRELATION , 2014, 1411.7404.

[7]  Nikole K. Lewis,et al.  ORBITAL PHASE VARIATIONS OF THE ECCENTRIC GIANT PLANET HAT-P-2b , 2013, 1302.5084.

[8]  Thomas J. Loredo,et al.  TRANSIT AND ECLIPSE ANALYSES OF THE EXOPLANET HD 149026b USING BLISS MAPPING , 2011, 1108.2057.

[9]  Howard Isaacson,et al.  A CORRELATION BETWEEN STELLAR ACTIVITY AND HOT JUPITER EMISSION SPECTRA , 2010, 1004.2702.

[10]  Rachel E. Anderson,et al.  The Mid-Infrared Instrument for the James Webb Space Telescope, X: Operations and Data Reduction , 2015, 1512.03000.

[11]  Peter Rumler,et al.  The JWST near-infrared spectrograph NIRSpec: status , 2012, Other Conferences.

[12]  David Charbonneau,et al.  THE 8 μm PHASE VARIATION OF THE HOT SATURN HD 149026b , 2009, 0908.1977.

[13]  Mark Clampin,et al.  Discovery and Characterization of Transiting SuperEarths Using an All-Sky Transit Survey and Follow-Up by the James Webb Space Telescope , 2010 .

[14]  David M. Kipping,et al.  ANALYSIS OF KEPLER'S SHORT-CADENCE PHOTOMETRY FOR TrES-2b , 2010, 1006.5680.

[15]  Huib Visser,et al.  The Mid-Infrared Instrument for the James Webb Space Telescope, VI: The Medium Resolution Spectrometer , 2015, 1508.03070.

[16]  Sara Seager,et al.  A PRECISE WATER ABUNDANCE MEASUREMENT FOR THE HOT JUPITER WASP-43b , 2014, 1410.2255.

[17]  Drake Deming,et al.  KEPLER AND GROUND-BASED TRANSITS OF THE EXO-NEPTUNE HAT-P-11b , 2011, 1107.2977.

[18]  B. J. Fulton,et al.  HAT-P-39b–HAT-P-41b: THREE HIGHLY INFLATED TRANSITING HOT JUPITERS , 2012, 1207.3344.

[19]  J. E. Stys,et al.  A Transiting Planet of a Sun-like Star , 2006 .

[20]  R. G. West,et al.  WASP-3b: a strongly irradiated transiting gas-giant planet , 2007, 0711.0126.

[21]  Joshua N. Winn,et al.  STARSPOTS, SPIN–ORBIT MISALIGNMENT, AND ACTIVE LATITUDES IN THE HAT-P-11 EXOPLANETARY SYSTEM , 2011, 1107.2920.

[22]  Drake Deming,et al.  EXOPLANET TRANSIT SPECTROSCOPY USING WFC3: WASP-12 b, WASP-17 b, AND WASP-19 b , 2013, 1310.2949.

[23]  Heather A. Knutson,et al.  The thermal emission of the exoplanet WASP-3b , 2014 .

[24]  John Krist,et al.  Science opportunities with the near-IR camera (NIRCam) on the James Webb Space Telescope (JWST) , 2012, Other Conferences.

[25]  Kyle L. Luther,et al.  CHARACTERIZING TRANSITING EXOPLANET ATMOSPHERES WITH JWST , 2015, 1511.05528.

[26]  Christof Iserlohe,et al.  Near-infrared integral-field spectroscopy of HD209458b , 2006, SPIE Astronomical Telescopes + Instrumentation.

[27]  Edinburgh,et al.  The Mid-Infrared Instrument for the James Webb Space Telescope: IV. The Low Resolution Spectrometer , 2015 .

[28]  Drake Deming,et al.  Clouds in the atmosphere of the super-Earth exoplanet GJ 1214b , 2013, Nature.

[29]  Sarah Kendrew,et al.  Transit spectroscopy with James Webb Space Telescope: systematics, starspots and stitching , 2015, 1501.06349.

[30]  Mark Clampin,et al.  INFRARED TRANSMISSION SPECTROSCOPY OF THE EXOPLANETS HD 209458b AND XO-1b USING THE WIDE FIELD CAMERA-3 ON THE HUBBLE SPACE TELESCOPE , 2013, 1302.1141.

[31]  Drake Deming,et al.  A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion , 2016, Nature.

[32]  Brice-Olivier Demory,et al.  Variability in the super-Earth 55 Cnc e , 2015, 1505.00269.

[33]  D. Charbonneau,et al.  THE CLIMATE OF HD 189733b FROM FOURTEEN TRANSITS AND ECLIPSES MEASURED BY SPITZER , 2010, 1007.4378.

[34]  G. Laughlin,et al.  Discovery and Characterization of Transiting Super Earths Using an All-Sky Transit Survey and Follow-up by the James Webb Space Telescope , 2009, 0903.4880.

[35]  Jacob L. Bean,et al.  A DETECTION OF WATER IN THE TRANSMISSION SPECTRUM OF THE HOT JUPITER WASP-12b AND IMPLICATIONS FOR ITS ATMOSPHERIC COMPOSITION , 2015, 1504.05586.

[36]  Drake Deming,et al.  THE EMERGENT 1.1–1.7 μm SPECTRUM OF THE EXOPLANET COROT-2B AS MEASURED USING THE HUBBLE SPACE TELESCOPE , 2014, 1401.4464.

[37]  R. G. West,et al.  WASP-78b and WASP-79b: two highly-bloated hot Jupiter-mass exoplanets orbiting F-type stars in Eridanus , 2012, 1206.1177.

[38]  Drake Deming,et al.  ATMOSPHERIC CHARACTERIZATION OF FIVE HOT JUPITERS WITH THE WIDE FIELD CAMERA 3 ON THE HUBBLE SPACE TELESCOPE , 2014, 1403.1266.

[39]  Gautam Vasisht,et al.  Observations of Transiting Exoplanets with the James Webb Space Telescope (JWST) , 2014, 1411.1754.

[40]  Kevin B. Stevenson,et al.  QUANTIFYING AND PREDICTING THE PRESENCE OF CLOUDS IN EXOPLANET ATMOSPHERES , 2016, 1601.03492.

[41]  Ch. Adam,et al.  Transit timing of TrES-2: a combined analysis of ground- and space-based photometry , 2014, 1408.7022.

[42]  UC Berkeley,et al.  HAT-P-11b: A SUPER-NEPTUNE PLANET TRANSITING A BRIGHT K STAR IN THE KEPLER FIELD , 2009, 0901.0282.

[43]  Drake Deming,et al.  Water vapour absorption in the clear atmosphere of a Neptune-sized exoplanet , 2014, Nature.

[44]  A. Mandell,et al.  MARGINALIZING INSTRUMENT SYSTEMATICS IN HST WFC3 TRANSIT LIGHT CURVES , 2016, 1601.02587.

[45]  A. Sozzetti,et al.  HAT-P-3b: A Heavy-Element-rich Planet Transiting a K Dwarf Star , 2007, 0707.4268.

[46]  J. Fortney,et al.  THE FLAT TRANSMISSION SPECTRUM OF THE SUPER-EARTH GJ1214b FROM WIDE FIELD CAMERA 3 ON THE HUBBLE SPACE TELESCOPE , 2011, 1111.5621.

[47]  Drake Deming,et al.  The hottest planet , 2007, Nature.

[48]  Neil Rowlands,et al.  The JWST Fine Guidance Sensor (FGS) and Near-Infrared Imager and Slitless Spectrograph (NIRISS) , 2012, Other Conferences.

[49]  David Charbonneau,et al.  TrES-2: The First Transiting Planet in the Kepler Field , 2006, astro-ph/0609335.

[50]  Drake Deming,et al.  REPEATABILITY AND ACCURACY OF EXOPLANET ECLIPSE DEPTHS MEASURED WITH POST-CRYOGENIC SPITZER , 2016, 1601.05101.