Genome-wide CRISPR Screen to Identify Genes that Suppress Transformation in the Presence of Endogenous KrasG12D

[1]  M. Hellmich,et al.  K‐ras Mutation Subtypes in NSCLC and Associated Co‐occuring Mutations in Other Oncogenic Pathways , 2019, Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer.

[2]  F. Ghishan,et al.  SLC9 Gene Family: Function, Expression, and Regulation. , 2018, Comprehensive Physiology.

[3]  Randall J. Platt,et al.  Mapping a functional cancer genome atlas of tumor suppressors in mouse liver using AAV-CRISPR–mediated direct in vivo screening , 2018, Science Advances.

[4]  L. Attardi,et al.  Deconstructing networks of p53-mediated tumor suppression in vivo , 2017, Cell Death and Differentiation.

[5]  M. Ladanyi,et al.  Effects of Co-occurring Genomic Alterations on Outcomes in Patients with KRAS-Mutant Non–Small Cell Lung Cancer , 2017, Clinical Cancer Research.

[6]  Neville E. Sanjana,et al.  Erratum: Genome-scale activation screen identifies a lncRNA locus regulating a gene neighbourhood , 2017, Nature.

[7]  Scott W. Lowe,et al.  Putting p53 in Context , 2017, Cell.

[8]  Jesse M. Engreitz,et al.  Genome-scale activation screen identifies a lncRNA locus regulating a gene neighbourhood , 2017, Nature.

[9]  Randall J. Platt,et al.  AAV-mediated direct in vivo CRISPR screen identifies functional suppressors in glioblastoma , 2017, Nature Neuroscience.

[10]  S. Dave,et al.  Generation and comparison of CRISPR-Cas9 and Cre-mediated genetically engineered mouse models of sarcoma , 2017, Nature Communications.

[11]  Christopher D. McFarland,et al.  A quantitative and multiplexed approach to uncover the fitness landscape of tumor suppression in vivo , 2017, Nature Methods.

[12]  Zhiping Weng,et al.  Genome-Wide CRISPR Screen Identifies Regulators of Mitogen-Activated Protein Kinase as Suppressors of Liver Tumors in Mice. , 2017, Gastroenterology.

[13]  R. Cencic,et al.  A CRISPR/Cas9 Functional Screen Identifies Rare Tumor Suppressors , 2016, Scientific Reports.

[14]  T. Lawrence,et al.  Fbxw7 Deletion Accelerates KrasG12D-Driven Pancreatic Tumorigenesis via Yap Accumulation123 , 2016, Neoplasia.

[15]  Neville E Sanjana,et al.  Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening , 2016, Nature Protocols.

[16]  W. Wurst,et al.  The REST remodeling complex protects genomic integrity during embryonic neurogenesis , 2016, eLife.

[17]  Meagan E. Sullender,et al.  Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9 , 2015, Nature Biotechnology.

[18]  J. Dixon,et al.  Site-specific Proteasome Phosphorylation Controls Cell Proliferation and Tumorigenesis , 2015, Nature Cell Biology.

[19]  Hakho Lee,et al.  Genome-wide CRISPR Screen in a Mouse Model of Tumor Growth and Metastasis , 2015, Cell.

[20]  Jun S. Liu,et al.  MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens , 2014, Genome Biology.

[21]  Robert Langer,et al.  CRISPR-Cas9 Knockin Mice for Genome Editing and Cancer Modeling , 2014, Cell.

[22]  Neville E. Sanjana,et al.  Improved vectors and genome-wide libraries for CRISPR screening , 2014, Nature Methods.

[23]  I. Mellman,et al.  Oncology meets immunology: the cancer-immunity cycle. , 2013, Immunity.

[24]  M. Mclaughlin,et al.  Distinct p53 Transcriptional Programs Dictate Acute DNA-Damage Responses and Tumor Suppression , 2011, Cell.

[25]  D. Hanahan,et al.  Hallmarks of Cancer: The Next Generation , 2011, Cell.

[26]  P. Lin,et al.  Targeted mutation of p53 and Rb in mesenchymal cells of the limb bud produces sarcomas in mice. , 2009, Carcinogenesis.

[27]  S. Reed,et al.  FBXW7/hCDC4 is a general tumor suppressor in human cancer. , 2007, Cancer research.

[28]  Jan Grimm,et al.  A spatially and temporally restricted mouse model of soft tissue sarcoma , 2007, Nature Medicine.

[29]  J. Minna,et al.  Distinct Epidermal Growth Factor Receptor and KRAS Mutation Patterns in Non–Small Cell Lung Cancer Patients with Different Tobacco Exposure and Clinicopathologic Features , 2006, Clinical Cancer Research.

[30]  R. DePinho,et al.  Endogenous oncogenic K-ras(G12D) stimulates proliferation and widespread neoplastic and developmental defects. , 2004, Cancer cell.

[31]  J. Giardina,et al.  Detection of K-ras mutations in resected primary leiomyosarcoma. , 1997, Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology.

[32]  L. Loeb,et al.  Mutations in the KRAS2 oncogene during progressive stages of human colon carcinoma. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[33]  D. Shibata,et al.  Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes , 1988, Cell.

[34]  G. Collins The next generation. , 2006, Scientific American.