Semiparametric stochastic metafrontier efficiency of European manufacturing firms

Abstract In this paper a semiparametric stochastic metafrontier approach is used to obtain insight into the performance of manufacturing firms in Europe. We differ from standard TFP studies at the firm level as we simultaneously allow for inefficiency , noise and do not impose a functional form on the input–output relation. Using AMADEUS firm-level data covering ten manufacturing sectors from seven EU15 countries, (1) we document substantial and persistent differences in performance (with Belgium and Germany as benchmark countries and Spain lagging behind) and a wide technology gap, (2) we confirm the absence of convergence in TFP between the seven selected countries, (3) we highlight a more pronounced technology gap for smaller firms.

[1]  Christopher F. Parmeter,et al.  Growth Empirics Without Parameters , 2012 .

[2]  William A. Barnett,et al.  The three-dimensional global properties of the minflex laurent, generalized leontief, and translog flexible functional forms , 1985 .

[3]  Ku-Hsieh Chen,et al.  A cross-country comparison of productivity growth using the generalised metafrontier Malmquist productivity index: with application to banking industries in Taiwan and China , 2011 .

[4]  W. Meeusen,et al.  Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error , 1977 .

[5]  M. Farrell The Measurement of Productive Efficiency , 1957 .

[6]  Léopold Simar,et al.  Nonparametric stochastic frontiers: A local maximum likelihood approach , 2007 .

[7]  James A. Levinsohn,et al.  Estimating Production Functions Using Inputs to Control for Unobservables , 2003 .

[8]  Timo Kuosmanen,et al.  Stochastic non-smooth envelopment of data: semi-parametric frontier estimation subject to shape constraints , 2012 .

[9]  Ilke Van Beveren,et al.  TOTAL FACTOR PRODUCTIVITY ESTIMATION: A PRACTICAL REVIEW , 2012 .

[10]  G. Battese,et al.  Metafrontier frameworks for the study of firm-level efficiencies and technology ratios , 2008 .

[11]  Volker Nocke,et al.  Firm Turnover in Imperfectly Competitive Markets , 2003 .

[12]  Jan De Loecker,et al.  Product Differentiation, Multi-Product Firms and Estimating the Impact of Trade Liberalization on Productivity , 2007 .

[13]  CompNet Task Force Micro-based evidence of EU competitiveness: The CompNet database , 2014 .

[14]  J. Florens,et al.  Nonparametric frontier estimation: a robust approach , 2002 .

[15]  Subal C. Kumbhakar,et al.  Scale and efficiency measurement using a semiparametric stochastic frontier model: evidence from the U.S. commercial banks , 2008 .

[16]  A. Pakes,et al.  The Dynamics of Productivity in the Telecommunications Equipment Industry , 1992 .

[17]  R. Tibshirani,et al.  Local Likelihood Estimation , 1987 .

[18]  Paul W. Wilson,et al.  FEAR: A software package for frontier efficiency analysis with R , 2008 .

[19]  Kristiaan Kerstens,et al.  Technology-Based Total Factor Productivity and Benchmarking: New Proposals and an Application , 2011 .

[20]  S. Kumbhakar,et al.  Semiparametric smooth-coefficient stochastic frontier model , 2013 .

[21]  Hans Bjurek The Malmquist Total Factor Productivity Index , 1996 .

[22]  C. Thomas-Agnan,et al.  NONPARAMETRIC FRONTIER ESTIMATION: A CONDITIONAL QUANTILE-BASED APPROACH , 2005, Econometric Theory.

[23]  J. Eaton,et al.  Plants and Productivity in International Trade , 2000 .

[24]  A. Yatchew,et al.  Nonparametric Regression Techniques in Economics , 1998 .

[25]  J. Haltiwanger,et al.  Producer Dynamics: New Evidence from Micro Data: Measuring and Analyzing Cross-country Differences in Firm Dynamics , 2009 .

[26]  Peter K. Schott,et al.  Products and Productivity , 2005 .

[27]  Jeong-Dong Lee,et al.  A metafrontier approach for measuring Malmquist productivity index , 2010 .

[28]  C. O'Donnell An aggregate quantity framework for measuring and decomposing productivity change , 2012 .

[29]  Carlos Martins-Filho,et al.  Nonparametric frontier estimation via local linear regression , 2007 .

[30]  Subal C. Kumbhakar,et al.  Public and Private Capital Productivity Puzzle: A Nonparametric Approach , 2006 .

[31]  Murray D. Smith,et al.  Stochastic Frontier Models with Dependent Error Components , 2008 .

[32]  Andrew B. Bernard,et al.  Exporters, Jobs, and Wages in U.S. Manufacturing: 1976-1987 , 1995 .

[33]  Mariana Iootty,et al.  Productivity Growth in Europe , 2013 .

[34]  Marc J. Melitz The Impact of Trade on Intra-Industry Reallocations and Aggregate Industry Productivity , 2003 .

[35]  William A. Barnett,et al.  The minflex-laurent translog flexible functional form , 1985 .

[36]  C. Morrison Quasi-fixed Inputs in U.S. and Japanese Manufacturing: a Generalized Leontief Restricted Cost Function Approach , 1988 .

[37]  G. Debreu The Coefficient of Resource Utilization , 1951 .

[38]  Massimo Del Gatto,et al.  Measuring Productivity , 2008 .

[39]  Zvi Griliches,et al.  The Inconsistency of Common Scale Estimators When Output Prices are Unobserved and Engogenous , 1992 .

[40]  R. Davidson,et al.  Testing for Restricted Stochastic Dominance , 2006 .

[41]  Barry K. Goodwin,et al.  The efficiency of Spanish arable crop organic farms, a local maximum likelihood approach , 2009 .

[42]  G. Battese,et al.  A Metafrontier Production Function for Estimation of Technical Efficiencies and Technology Gaps for Firms Operating Under Different Technologies , 2004 .

[43]  Jeffrey S. Racine,et al.  Smooth constrained frontier analysis , 2013 .

[44]  Chad Syverson,et al.  Reallocation, Firm Turnover, and Efficiency: Selection on Productivity or Profitability? , 2005 .

[45]  Jeffrey S. Racine,et al.  Nonparametric Econometrics: The np Package , 2008 .

[46]  R. Färe,et al.  Productivity Growth, Technical Progress, and Efficiency Change in Industrialized Countries , 1994 .

[47]  D. Aigner,et al.  P. Schmidt, 1977,?Formulation and estimation of stochastic frontier production function models,? , 1977 .

[48]  George E. Battese,et al.  Technology Gap, Efficiency, and a Stochastic Metafrontier Function , 2002 .

[49]  Bruno Merlevede,et al.  Multinational Networks, Domestic,and Foreign Firms in Europe , 2015 .

[50]  Carlos Martins-Filho,et al.  Semiparametric Stochastic Frontier Estimation via Profile Likelihood , 2015 .

[51]  Léopold Simar,et al.  How to improve the performances of DEA/FDH estimators in the presence of noise? , 2007 .

[52]  L. Simar,et al.  Stochastic FDH/DEA estimators for frontier analysis , 2008 .

[53]  T. Mayer,et al.  The Happy Few: The Internationalisation of European Firms , 2007 .

[54]  L. R. Christensen,et al.  THE ECONOMIC THEORY OF INDEX NUMBERS AND THE MEASUREMENT OF INPUT, OUTPUT, AND PRODUCTIVITY , 1982 .

[55]  P. W. Wilson,et al.  Estimation and Inference in Nonparametric Frontier Models: Recent Developments and Perspectives , 2013 .

[56]  Daniel A. Ackerberg,et al.  Structural identification of production functions , 2006 .

[57]  Charles R. Hulten Total Factor Productivity: A Short Biography , 2000 .

[58]  Mark Doms,et al.  Understanding Productivity: Lessons from Longitudinal Microdata , 2000 .

[59]  K. Sun Constrained nonparametric estimation of input distance function , 2015 .

[60]  R. Färe,et al.  Efficiency and Productivity: Malmquist and More , 2008 .

[61]  G. Ottaviano,et al.  The triggers of competitiveness: the EFIGE cross-country report. Bruegel Blueprint 17, 17 July 2012 , 2012 .

[62]  C. Syverson What Determines Productivity? , 2010 .

[63]  Léopold Simar,et al.  Local likelihood estimation of truncated regression and its partial derivatives: theory and application , 2008 .

[64]  B. Park,et al.  Local maximum likelihood techniques with categorical data , 2010 .