Composition and spectral invariance of pseudodifferential Operators on Modulation Spaces

We introduce new classes of Banach algebras of pseudodifferential operators with symbols in certain modulation spaces and investigate their composition and the functional calculus. Operators in these algebras possess the spectral invariance property on the associated family of modulation spaces. These results extend and contain Sjöstrand's theory, and they are obtained with new phase-space methods instead of “hard analysis”.

[1]  Karlheinz Gröchenig,et al.  Foundations of Time-Frequency Analysis , 2000, Applied and numerical harmonic analysis.

[2]  M. Dimassi,et al.  Spectral Asymptotics in the Semi-Classical Limit: Frontmatter , 1999 .

[3]  H. Cordes,et al.  An algebra of pseudodifferential operators with nonsmooth symbol. , 1978 .

[4]  K. Gröchenig,et al.  Time–Frequency analysis of localization operators , 2003 .

[5]  K. Gröchenig,et al.  Weighted group algebras on groups of polynomial growth , 2003 .

[6]  J. Toft Positivity Properties for Non-commutative Convolution Algebras with Application in Pseudo-differential Calculus , 2002 .

[7]  K. Gröchenig,et al.  Wiener's lemma for twisted convolution and Gabor frames , 2003 .

[8]  R. Beals Characterization of pseudodifferential operators and applications , 1977 .

[9]  G. Folland Harmonic analysis in phase space , 1989 .

[10]  Johannes Ueberberg Zur Spektralinvarianz von Algebren von Pseudodifferentialoperatoren in derLp-Theorie , 1988 .

[11]  B. Gramsch Relative Inversion in der Störungstheorie von Operatoren und Ψ-Algebren , 1984 .

[12]  G. Folland Harmonic Analysis in Phase Space. (AM-122), Volume 122 , 1989 .

[13]  Karlheinz Gröchenig,et al.  Modulation spaces and pseudodifferential operators , 1999 .

[14]  A. Hulanicki On the spectrum of convolution operators on groups with polynomial growth , 1972 .

[15]  L. Hörmander The weyl calculus of pseudo‐differential operators , 1979 .

[16]  I. M. Gelfand,et al.  Commutative Normed Rings , 1968 .

[17]  K. Gröchenig,et al.  Necessary conditions for Schatten class localization operators , 2005 .

[18]  Yuri Safarov,et al.  SPECTRAL ASYMPTOTICS IN THE SEMI‐CLASSICAL LIMIT (London Mathematical Society Lecture Note Series 268) , 2000 .

[19]  K. Gröchenig,et al.  Symmetry of Weighted L1‐Algebras and the GRS‐Condition , 2006 .

[20]  F. Hérau Melin-Hörmander inequality in a Wiener type pseudo-differential algebra , 2001 .

[21]  Timothy S. Murphy,et al.  Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals , 1993 .

[22]  C. Heil,et al.  Singular Values of Compact Pseudodifferential Operators , 1997 .

[23]  L. Hörmander The Analysis of Linear Partial Differential Operators III , 2007 .

[24]  Lotfi A. Zadeh,et al.  The Determination of the Impulsive Response of Variable Networks , 1950 .

[25]  J. Bony,et al.  Espaces fonctionnels associés au calcul de Weyl-Hörmander , 1994 .

[26]  L. Hörmander Analysis of Linear Partial Differential Operators II , 2005 .

[27]  Remarks on a Wiener type pseudodifferential algebra and Fourier integral operators , 1997 .

[28]  J. Toft,et al.  Subalgebras to a Wiener type algebra of pseudo-differential operators , 2006 .

[29]  H. Feichtinger Modulation Spaces on Locally Compact Abelian Groups , 2003 .

[30]  Stéphane Jaffard Propriétés des matrices « bien localisées » près de leur diagonale et quelques applications , 1990 .

[31]  Hans-Gerd Leopold,et al.  Spectral invariance for algebras of pseudodifferential operators on besov-triebel-lizorkin spaces , 1993 .

[32]  Karlheinz Gröchenig,et al.  Counterexamples for boundedness of pseudodifferential operators , 2004 .

[33]  Mouez Dimassi,et al.  Spectral asymptotics in the semi-classical limit , 1999 .

[34]  H. Weyl The Theory Of Groups And Quantum Mechanics , 1931 .

[35]  Demetrio Labate,et al.  Pseudodifferential Operators on Modulation Spaces , 2001 .

[36]  K. Gröchenig Localization of Frames, Banach Frames, and the Invertibility of the Frame Operator , 2004 .

[37]  J. Toft Positivity properties in noncommutative convoluti algebras with applications in pseudo-differential calculus , 2003 .

[38]  J. Sjöstrand,et al.  Wiener type algebras of pseudodifferential operators , 1995 .

[39]  MODULATION SPACES AS SYMBOL CLASSES FOR PSEUDODIFFERENTIAL OPERATORS , 2002 .

[40]  H. Feichtinger,et al.  Gabor Frames and Time-Frequency Analysis of Distributions* , 1997 .