Automated discovery of reaction pathways, rate constants, and transition states using reactive molecular dynamics simulations.

We provide a methodology for deducing quantitative reaction models from reactive molecular dynamics simulations by identifying, quantifying, and evaluating elementary reactions of classical trajectories. Simulations of the inception stage of methane oxidation are used to demonstrate our methodology. The agreement of pathways and rates with available literature data reveals the potential of reactive molecular dynamics studies for developing quantitative reaction models.

[1]  A. V. van Duin,et al.  Reactive molecular dynamics study on the first steps of DNA damage by free hydroxyl radicals. , 2011, The journal of physical chemistry. A.

[2]  M. Su,et al.  Rate constants for H + CH4, CH3 + H2, and CH4 dissociation at high temperature , 2001 .

[3]  Michael J. Pilling,et al.  Evaluated Kinetic Data for Combustion Modelling , 1992 .

[4]  R. Shaw Semi‐empirical extrapolation and estimation of rate constants for abstraction of H from methane by H, O, HO, and O2 , 1978 .

[5]  D. B. Smith,et al.  Spontaneous ignition of methane: Measurement and chemical model , 1985 .

[6]  L. Radom,et al.  The reversible addition-fragmentation chain transfer process and the strength and limitations of modeling: Comment on “the magnitude of the fragmentation rate coefficient” , 2003 .

[7]  G. Henkelman,et al.  Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points , 2000 .

[8]  J. Polanyi,et al.  Location of Energy Barriers. II. Correlation with Barrier Height , 1969 .

[9]  Yan Zhang,et al.  A reactive molecular dynamics study of n-heptane pyrolysis at high temperature. , 2013, The journal of physical chemistry. A.

[10]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[11]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[12]  A. V. van Duin,et al.  ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. , 2008, The journal of physical chemistry. A.

[13]  W. Green,et al.  Oxygenate, oxyalkyl and alkoxycarbonyl thermochemistry and rates for hydrogen abstraction from oxygenates , 2003 .

[14]  N. Lümmen ReaxFF-molecular dynamics simulations of non-oxidative and non-catalyzed thermal decomposition of methane at high temperatures. , 2010, Physical chemistry chemical physics : PCCP.

[15]  Xiangyuan Li,et al.  ReaxFF molecular dynamics simulations of oxidation of toluene at high temperatures. , 2012, The journal of physical chemistry. A.

[16]  A. V. Duin,et al.  ReaxFF: A Reactive Force Field for Hydrocarbons , 2001 .

[17]  P. Dagaut,et al.  CFD simulations using the TDAC method to model iso-octane combustion for a large range of ozone seeding and temperature conditions in a single cylinder HCCI engine , 2014 .

[18]  W. Goddard,et al.  Mechanism and kinetics for the initial steps of pyrolysis and combustion of 1,6-dicyclopropane-2,4-hexyne from ReaxFF reactive dynamics. , 2011, The journal of physical chemistry. A.

[19]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[20]  Adri C. T. van Duin,et al.  Connectivity-Based Parallel Replica Dynamics for Chemically Reactive Systems: From Femtoseconds to Microseconds , 2013 .

[21]  S. Benson,et al.  Thermochemical Kinetics: Methods for the Estimation of Thermochemical Data and Rate Parameters , 1976 .

[22]  J. Troe,et al.  The Dissociation-Recombination System CH4 + M ⇔ CH3 + H + M: II. Evaluation of Experiments up to 5000 K and Temperature Dependence of , 1992 .

[23]  E. Hensen,et al.  Mechanism of Brønsted acid-catalyzed conversion of carbohydrates , 2012 .

[24]  D. Golden,et al.  Additivity rules for the estimation of thermochemical properties , 1969 .

[25]  Jim Pfaendtner,et al.  Car–Parrinello Molecular Dynamics + Metadynamics Study of High-Temperature Methanol Oxidation Reactions Using Generic Collective Variables , 2014 .

[26]  B. C. Garrett,et al.  Variational Transition State Theory , 1980 .

[27]  Svante Arrhenius,et al.  Discussion on “the radiation theory of chemical action” , 1922 .

[28]  Kevin Van Geem,et al.  Comprehensive reaction mechanism for n-butanol pyrolysis and combustion , 2011 .

[29]  Wenjun Zhu,et al.  The intrinsic mechanism of methane oxidation under explosion condition: A combined ReaxFF and DFT study , 2014 .

[30]  Aiichiro Nakano,et al.  A space-time-ensemble parallel nudged elastic band algorithm for molecular kinetics simulation , 2008, Comput. Phys. Commun..

[31]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[32]  Chris Morley,et al.  Open Babel: An open chemical toolbox , 2011, J. Cheminformatics.

[33]  José Mario Martínez,et al.  PACKMOL: A package for building initial configurations for molecular dynamics simulations , 2009, J. Comput. Chem..

[34]  A. V. van Duin,et al.  Initiation mechanisms and kinetics of pyrolysis and combustion of JP-10 hydrocarbon jet fuel. , 2009, The journal of physical chemistry. A.

[35]  R. Kosloff,et al.  Decomposition of condensed phase energetic materials: interplay between uni- and bimolecular mechanisms. , 2014, Journal of the American Chemical Society.

[36]  S. Perrier,et al.  'Green' reversible addition-fragmentation chain-transfer (RAFT) polymerization. , 2010, Nature chemistry.

[37]  D. Truhlar,et al.  Interpolated variational transition state theory and tunneling calculations of the rate constant of the reaction OH+CH4 at 223–2400 K , 1993 .

[38]  Cooper J. Galvin,et al.  Complex Chemical Reaction Networks from Heuristics-Aided Quantum Chemistry. , 2014, Journal of chemical theory and computation.

[39]  M. Su,et al.  Reflected shock tube studies of high-temperature rate constants for OH + CH4 --> CH3 + H2O and CH3 + NO2 --> CH3O + NO. , 2005, The journal of physical chemistry. A.

[40]  R. McGibbon,et al.  Discovering chemistry with an ab initio nanoreactor , 2014, Nature chemistry.

[41]  A. V. Duin,et al.  Tribochemistry of Phosphoric Acid Sheared between Quartz Surfaces: A Reactive Molecular Dynamics Study , 2013 .

[42]  M. Kraft,et al.  Detailed Modeling of soot formation in a partially stirred plug flow reactor , 2002 .

[43]  Takamasa Momose,et al.  Thermal rate constants for SiH4⇄SiH3+H and CH4⇄CH3+H by canonical variational transition state theory , 1994 .

[44]  G. A. Petersson,et al.  Computational Study of the Kinetics of Hydrogen Abstraction from Fluoromethanes by the Hydroxyl Radical , 1998 .

[45]  R. K. Shyamasundar,et al.  Introduction to algorithms , 1996 .

[46]  David Weininger,et al.  SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules , 1988, J. Chem. Inf. Comput. Sci..

[47]  N. Goldman Accelerated reaction simulations: A virtual squeeze on chemistry. , 2014, Nature chemistry.

[48]  A. Laio,et al.  Metadynamics: a method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science , 2008 .

[49]  Kefeng Yan,et al.  Reactive molecular dynamics simulations of the initial stage of brown coal oxidation at high temperatures , 2013 .

[50]  Klaus Lucas,et al.  Molecular Models for Fluids , 2007 .

[51]  E. Reed,et al.  Comparison of ReaxFF, DFTB, and DFT for phenolic pyrolysis. 1. Molecular dynamics simulations. , 2013, The journal of physical chemistry. A.