Colouring vertices of triangle-free graphs without forests
暂无分享,去创建一个
Rajiv Raman | Konrad Dabrowski | Vadim V. Lozin | Bernard Ries | V. Lozin | B. Ries | R. Raman | Konrad Dabrowski
[1] Martin Kochol,et al. The 3-Colorability Problem on Graphs with Maximum Degree Four , 2003, SIAM J. Comput..
[2] Reinhard Diestel,et al. Graph Theory , 1997 .
[3] Bruno Courcelle,et al. Upper bounds to the clique width of graphs , 2000, Discret. Appl. Math..
[4] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[5] Shuji Tsukiyama,et al. A New Algorithm for Generating All the Maximal Independent Sets , 1977, SIAM J. Comput..
[6] Petr A. Golovach,et al. Three complexity results on coloring Pk-free graphs , 2009, Eur. J. Comb..
[7] The Band , 1921 .
[8] Stephan Brandt,et al. Triangle-free graphs and forbidden subgraphs , 2002, Discret. Appl. Math..
[9] Bert Randerath,et al. 3-Colorability and forbidden subgraphs. I: Characterizing pairs , 2004, Discret. Math..
[10] Gerhard J. Woeginger,et al. The complexity of coloring graphs without long induced paths , 2001, Acta Cybern..
[11] Vadim V. Lozin,et al. The Clique-Width of Bipartite Graphs in Monogenic Classes , 2008, Int. J. Found. Comput. Sci..
[12] Ingo Schiermeyer,et al. 3-Colorability in P for P6-free graphs , 2004, Discret. Appl. Math..
[13] Ian Holyer,et al. The NP-Completeness of Edge-Coloring , 1981, SIAM J. Comput..
[14] Ingo Schiermeyer,et al. A note on Brooks' theorem for triangle-free graphs , 2002, Australas. J Comb..
[15] Vadim V. Lozin,et al. Deciding k-Colorability of P5-Free Graphs in Polynomial Time , 2007, Algorithmica.
[16] Dieter Rautenbach,et al. On the Band-, Tree-, and Clique-Width of Graphs with Bounded Vertex Degree , 2004, SIAM J. Discret. Math..
[17] David P. Dailey. Uniqueness of colorability and colorability of planar 4-regular graphs are NP-complete , 1980, Discret. Math..
[18] Vadim V. Lozin,et al. Coloring edges and vertices of graphs without short or long cycles , 2007, Contributions Discret. Math..
[19] Andreas Brandstädt,et al. P6- and triangle-free graphs revisited: structure and bounded clique-width , 2006, Discret. Math. Theor. Comput. Sci..
[20] Van Bang Le,et al. On the complexity of 4-coloring graphs without long induced paths , 2007, Theor. Comput. Sci..
[21] Vadim V. Lozin,et al. Bipartite graphs without a skew star , 2002, Discret. Math..
[22] Stephan Brandt,et al. A 4-colour problem for dense triangle-free graphs , 2002, Discret. Math..
[23] Stephan Olariu,et al. Paw-Fee Graphs , 1988, Inf. Process. Lett..
[24] Maria Chudnovsky,et al. The Erdös-Hajnal conjecture for bull-free graphs , 2008, J. Comb. Theory, Ser. B.
[25] Celina M. H. de Figueiredo,et al. Optimizing Bull-Free Perfect Graphs , 2005, SIAM J. Discret. Math..
[26] Zsolt Tuza,et al. Complexity of Coloring Graphs without Forbidden Induced Subgraphs , 2001, WG.
[27] Vadim V. Lozin,et al. Vertex 3-colorability of Claw-free Graphs , 2007, Algorithmic Oper. Res..
[28] Jian Song,et al. Determining the chromatic number of triangle-free 2P3-free graphs in polynomial time , 2012, Theor. Comput. Sci..
[29] Myriam Preissmann,et al. On the NP-completeness of the k-colorability problem for triangle-free graphs , 1996, Discret. Math..
[30] Jian Song,et al. Narrowing Down the Gap on the Complexity of Coloring Pk-Free Graphs , 2010, WG.
[31] Ingo Schiermeyer,et al. Three-colourability and forbidden subgraphs. II: polynomial algorithms , 2002, Discret. Math..
[32] Maria Chudnovsky,et al. The structure of bull-free graphs II and III - A summary , 2012, J. Comb. Theory, Ser. B.
[33] Benjamin Lévêque,et al. Coloring Bull-Free Perfectly Contractile Graphs , 2008, SIAM J. Discret. Math..
[34] Vadim V. Lozin,et al. Recent developments on graphs of bounded clique-width , 2009, Discret. Appl. Math..
[35] L. Lovász,et al. Polynomial Algorithms for Perfect Graphs , 1984 .
[36] Michaël Rao,et al. MSOL partitioning problems on graphs of bounded treewidth and clique-width , 2007, Theor. Comput. Sci..
[37] David Schindl,et al. Some new hereditary classes where graph coloring remains NP-hard , 2005, Discret. Math..
[38] Egon Balas,et al. On graphs with polynomially solvable maximum-weight clique problem , 1989, Networks.