Colouring vertices of triangle-free graphs without forests

The vertex colouring problem is known to be NP-complete in the class of triangle-free graphs. Moreover, it is NP-complete in any subclass of triangle-free graphs defined by a finite collection of forbidden induced subgraphs, each of which contains a cycle. In this paper, we study the vertex colouring problem in subclasses of triangle-free graphs obtained by forbidding graphs without cycles, i.e., forests, and prove polynomial-time solvability of the problem in many classes of this type. In particular, our paper, combined with some previously known results, provides a complete description of the complexity status of the problem in subclasses of triangle-free graphs obtained by forbidding a forest with at most 6 vertices.

[1]  Martin Kochol,et al.  The 3-Colorability Problem on Graphs with Maximum Degree Four , 2003, SIAM J. Comput..

[2]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[3]  Bruno Courcelle,et al.  Upper bounds to the clique width of graphs , 2000, Discret. Appl. Math..

[4]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[5]  Shuji Tsukiyama,et al.  A New Algorithm for Generating All the Maximal Independent Sets , 1977, SIAM J. Comput..

[6]  Petr A. Golovach,et al.  Three complexity results on coloring Pk-free graphs , 2009, Eur. J. Comb..

[7]  The Band , 1921 .

[8]  Stephan Brandt,et al.  Triangle-free graphs and forbidden subgraphs , 2002, Discret. Appl. Math..

[9]  Bert Randerath,et al.  3-Colorability and forbidden subgraphs. I: Characterizing pairs , 2004, Discret. Math..

[10]  Gerhard J. Woeginger,et al.  The complexity of coloring graphs without long induced paths , 2001, Acta Cybern..

[11]  Vadim V. Lozin,et al.  The Clique-Width of Bipartite Graphs in Monogenic Classes , 2008, Int. J. Found. Comput. Sci..

[12]  Ingo Schiermeyer,et al.  3-Colorability in P for P6-free graphs , 2004, Discret. Appl. Math..

[13]  Ian Holyer,et al.  The NP-Completeness of Edge-Coloring , 1981, SIAM J. Comput..

[14]  Ingo Schiermeyer,et al.  A note on Brooks' theorem for triangle-free graphs , 2002, Australas. J Comb..

[15]  Vadim V. Lozin,et al.  Deciding k-Colorability of P5-Free Graphs in Polynomial Time , 2007, Algorithmica.

[16]  Dieter Rautenbach,et al.  On the Band-, Tree-, and Clique-Width of Graphs with Bounded Vertex Degree , 2004, SIAM J. Discret. Math..

[17]  David P. Dailey Uniqueness of colorability and colorability of planar 4-regular graphs are NP-complete , 1980, Discret. Math..

[18]  Vadim V. Lozin,et al.  Coloring edges and vertices of graphs without short or long cycles , 2007, Contributions Discret. Math..

[19]  Andreas Brandstädt,et al.  P6- and triangle-free graphs revisited: structure and bounded clique-width , 2006, Discret. Math. Theor. Comput. Sci..

[20]  Van Bang Le,et al.  On the complexity of 4-coloring graphs without long induced paths , 2007, Theor. Comput. Sci..

[21]  Vadim V. Lozin,et al.  Bipartite graphs without a skew star , 2002, Discret. Math..

[22]  Stephan Brandt,et al.  A 4-colour problem for dense triangle-free graphs , 2002, Discret. Math..

[23]  Stephan Olariu,et al.  Paw-Fee Graphs , 1988, Inf. Process. Lett..

[24]  Maria Chudnovsky,et al.  The Erdös-Hajnal conjecture for bull-free graphs , 2008, J. Comb. Theory, Ser. B.

[25]  Celina M. H. de Figueiredo,et al.  Optimizing Bull-Free Perfect Graphs , 2005, SIAM J. Discret. Math..

[26]  Zsolt Tuza,et al.  Complexity of Coloring Graphs without Forbidden Induced Subgraphs , 2001, WG.

[27]  Vadim V. Lozin,et al.  Vertex 3-colorability of Claw-free Graphs , 2007, Algorithmic Oper. Res..

[28]  Jian Song,et al.  Determining the chromatic number of triangle-free 2P3-free graphs in polynomial time , 2012, Theor. Comput. Sci..

[29]  Myriam Preissmann,et al.  On the NP-completeness of the k-colorability problem for triangle-free graphs , 1996, Discret. Math..

[30]  Jian Song,et al.  Narrowing Down the Gap on the Complexity of Coloring Pk-Free Graphs , 2010, WG.

[31]  Ingo Schiermeyer,et al.  Three-colourability and forbidden subgraphs. II: polynomial algorithms , 2002, Discret. Math..

[32]  Maria Chudnovsky,et al.  The structure of bull-free graphs II and III - A summary , 2012, J. Comb. Theory, Ser. B.

[33]  Benjamin Lévêque,et al.  Coloring Bull-Free Perfectly Contractile Graphs , 2008, SIAM J. Discret. Math..

[34]  Vadim V. Lozin,et al.  Recent developments on graphs of bounded clique-width , 2009, Discret. Appl. Math..

[35]  L. Lovász,et al.  Polynomial Algorithms for Perfect Graphs , 1984 .

[36]  Michaël Rao,et al.  MSOL partitioning problems on graphs of bounded treewidth and clique-width , 2007, Theor. Comput. Sci..

[37]  David Schindl,et al.  Some new hereditary classes where graph coloring remains NP-hard , 2005, Discret. Math..

[38]  Egon Balas,et al.  On graphs with polynomially solvable maximum-weight clique problem , 1989, Networks.