On the limiting empirical measure of eigenvalues of the sum of rank one matrices with log-concave distribution

We consider n × n real symmetric and hermitian random matrices Hn that are sums of a non-random matrix H n and of mn rank-one matrices determined by i.i.d. isotropic random vectors with log-concave probability law and real amplitudes. This is an analog of the setting of Marchenko and Pastur [Mat. Sb. 72 (1967)]. We prove that if mn/n → c ∈ [0,∞) as n → ∞, and the distribution of eigenvalues of H n and the distribution of amplitudes converge weakly, then the distribution of eigenvalues of Hn converges weakly in probability to the non-random limit, found by Marchenko and Pastur.

[1]  Concentration of mass and central limit properties of isotropic convex bodies , 2004 .

[2]  A. Giannopoulos,et al.  Volume radius of a random polytope in a convex body , 2003, Mathematical Proceedings of the Cambridge Philosophical Society.

[3]  V. Milman,et al.  Concentration Property on Probability Spaces , 2000 .

[4]  R. Muirhead Aspects of Multivariate Statistical Theory , 1982, Wiley Series in Probability and Statistics.

[5]  Guillaume Aubrun Random Points in the Unit Ball of ℓnp , 2006 .

[6]  S. Szarek,et al.  Chapter 8 - Local Operator Theory, Random Matrices and Banach Spaces , 2001 .

[7]  Grigoris Paouris,et al.  A stability result for mean width of Lp-centroid bodies , 2007 .

[8]  B. Klartag,et al.  Power-law estimates for the central limit theorem for convex sets , 2006, math/0611577.

[9]  Philip D. Plowright,et al.  Convexity , 2019, Optimization for Chemical and Biochemical Engineering.

[10]  V. Milman,et al.  Asymptotic Theory Of Finite Dimensional Normed Spaces , 1986 .

[11]  A. Prékopa Logarithmic concave measures with applications to stochastic programming , 1971 .

[12]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[13]  I. M. Glazman,et al.  Theory of linear operators in Hilbert space , 1961 .

[14]  Leonid Pastur A Simple Approach to Global Regime of the Random Matrix Theory , 1999 .

[15]  Z. Bai METHODOLOGIES IN SPECTRAL ANALYSIS OF LARGE DIMENSIONAL RANDOM MATRICES , A REVIEW , 1999 .

[16]  J. W. Silverstein,et al.  On the empirical distribution of eigenvalues of a class of large dimensional random matrices , 1995 .

[17]  M. Rudelson,et al.  Smallest singular value of random matrices and geometry of random polytopes , 2005 .

[18]  B. Efron,et al.  The Jackknife Estimate of Variance , 1981 .

[19]  J. Bourgain Random Points in Isotropic Convex Sets , 1998 .

[20]  Theodore P. Hill,et al.  Necessary and sufficient condition that the limit of Stieltjes transforms is a Stieltjes transform , 2003, J. Approx. Theory.

[21]  C. Borell Convex measures on locally convex spaces , 1974 .

[22]  V. Girko,et al.  Theory of stochastic canonical equations , 2001 .