Controllability Aspects of The Lindblad-Kossakowski Master Equation
暂无分享,去创建一个
[1] Uwe Helmke,et al. The dynamics of open quantum systems: accessibility results , 2007 .
[2] A. Holevo. Statistical structure of quantum theory , 2001 .
[3] Bernard Bonnard,et al. Transitivity of families of invariant vector fields on the semidirect products of Lie groups , 1982 .
[4] Timo O. Reiss,et al. Optimal control of spin dynamics in the presence of relaxation. , 2002, Journal of magnetic resonance.
[5] University of Toronto,et al. Conditions for strictly purity-decreasing quantum Markovian dynamics , 2006 .
[6] Velimir Jurdjevic,et al. Control systems on semi-simple Lie groups and their homogeneous spaces , 1981 .
[7] K. Dekimpe,et al. TRANSLATIONS IN SIMPLY TRANSITIVE AFFINE ACTIONS OF FREE 2-STEP NILPOTENT LIE GROUPS , 2006 .
[8] C. Altafini,et al. Quantum Markovian master equation driven by coherent controls: a controllability analysis , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).
[9] Jonathan P Dowling,et al. Quantum technology: the second quantum revolution , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[10] D. Montgomery,et al. Transformation Groups of Spheres , 1943 .
[11] Li-Chen Fu,et al. Controllability of spacecraft systems in a central gravitational field , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.
[12] Burkhard Luy,et al. Boundary of quantum evolution under decoherence , 2003, Proceedings of the National Academy of Sciences of the United States of America.
[13] Velimir Jurdjevic,et al. Controllability properties of affine systems , 1984, The 23rd IEEE Conference on Decision and Control.
[14] Uwe Helmke,et al. The significance of the C -numerical range and the local C -numerical range in quantum control and quantum information , 2007, math-ph/0701035.
[15] S. Helgason. Differential Geometry, Lie Groups, and Symmetric Spaces , 1978 .
[16] D. D’Alessandro,et al. Small time controllability of systems on compact Lie groups and spin angular momentum , 2001 .
[17] V. Jurdjevic. Geometric control theory , 1996 .
[18] Uwe Helmke,et al. Lie Theory for Quantum Control , 2008 .
[19] S. Schirmer,et al. Orbits of quantum states and geometry of Bloch vectors for N-level systems , 2003, quant-ph/0308004.
[20] J. Hilgert,et al. Lie groups, convex cones, and semigroups , 1989 .
[21] E. Sudarshan,et al. Completely Positive Dynamical Semigroups of N Level Systems , 1976 .
[22] I. Chuang,et al. Quantum Computation and Quantum Information: Bibliography , 2010 .
[23] Jacques Tits. Tabellen zu den einfachen Lie Gruppen und ihren Darstellungen , 1967 .
[24] D. Tannor,et al. Phase space approach to theories of quantum dissipation , 1997 .
[25] A. Baker. Matrix Groups: An Introduction to Lie Group Theory , 2003 .
[26] R. Brockett. Lie Theory and Control Systems Defined on Spheres , 1973 .
[27] L. Grüne. Asymptotic Behavior of Dynamical and Control Systems under Perturbation and Discretization , 2002 .
[28] Domenico D'Alessandro,et al. Notions of controllability for bilinear multilevel quantum systems , 2003, IEEE Trans. Autom. Control..
[29] William M. Boothby,et al. A transitivity problem from control theory , 1975 .
[30] E. B. Davies. Quantum theory of open systems , 1976 .
[31] Dionisis Stefanatos,et al. Relaxation-optimized transfer of spin order in Ising spin chains (6 pages) , 2005 .
[32] P. Krishnaprasad,et al. Control Systems on Lie Groups , 2005 .
[33] Uwe Helmke,et al. Spin Dynamics: A Paradigm for Time Optimal Control on Compact Lie Groups , 2006, J. Glob. Optim..
[34] A. W. Knapp. Lie groups beyond an introduction , 1988 .
[35] A. I. Solomon,et al. Controllability of Quantum Systems , 2003 .
[36] Domenico D'Alessandro,et al. Topological properties of reachable sets and the control of quantum bits , 2000 .
[37] Man-Duen Choi. Completely positive linear maps on complex matrices , 1975 .
[38] G. Bodenhausen,et al. Principles of nuclear magnetic resonance in one and two dimensions , 1987 .
[39] Uwe Helmke,et al. Lie-semigroup structures for reachability and control of open quantum systems: kossakowski-lindblad generators form lie wedge to markovian channels , 2009 .
[40] C. Altafini,et al. QUANTUM MECHANICS (GENERAL AND NONRELATIVISTIC) 2357 Controllability properties for finite dimensional quantum Markovian master equations , 2002, quant-ph/0211194.
[41] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[42] Two-transitive Lie groups , 2001, math/0106108.
[43] Optimal control of coupled spin dynamics under cross-correlated relaxation , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).
[44] U. Helmke,et al. Optimization and Dynamical Systems , 1994, Proceedings of the IEEE.
[45] William M. Boothby,et al. Determination of the Transitivity of Bilinear Systems , 1979 .
[46] Helmut Völklein,et al. Transitivitätsfragen bei linearen Liegruppen , 1981 .
[47] G. Lindblad. On the generators of quantum dynamical semigroups , 1976 .
[48] J. Swoboda. Time-optimal Control of Spin Systems , 2006, quant-ph/0601131.
[49] L. Fu,et al. Controllability of spacecraft systems in a central gravitational field , 1994, IEEE Trans. Autom. Control..
[50] Dionisis Stefanatos,et al. Optimal control of coupled spins in presence of longitudinal and transverse relaxation , 2003, 2003 IEEE International Workshop on Workload Characterization (IEEE Cat. No.03EX775).
[51] K. Kraus. General state changes in quantum theory , 1971 .
[52] K. Lendi,et al. Quantum Dynamical Semigroups and Applications , 1987 .
[53] Claudio Altafini,et al. Coherent control of open quantum dynamical systems , 2004 .