Structurally Conserved Primate LncRNAs Are Transiently Expressed during Human Cortical Differentiation and Influence Cell-Type-Specific Genes

[1]  David Haussler,et al.  Comparative Annotation Toolkit (CAT)—simultaneous clade and personal genome annotation , 2017, bioRxiv.

[2]  Alex A. Pollen,et al.  Spatiotemporal gene expression trajectories reveal developmental hierarchies of the human cortex , 2017, Science.

[3]  Kathleen M Jagodnik,et al.  Massive mining of publicly available RNA-seq data from human and mouse , 2017, Nature Communications.

[4]  Jordan A. Ramilowski,et al.  An atlas of human long non-coding RNAs with accurate 5′ ends , 2017, Nature.

[5]  Jennifer Harrow,et al.  High-throughput annotation of full-length long noncoding RNAs with Capture Long-Read Sequencing , 2017, Nature Genetics.

[6]  Howard Y. Chang,et al.  NONCODING RNA: CRISPRi‐based genome‐scale identification of functional long noncoding RNA loci in human cells , 2017 .

[7]  S. Pääbo,et al.  Author response: Differences and similarities between human and chimpanzee neural progenitors during cerebral cortex development , 2016 .

[8]  Igor Ulitsky,et al.  Evolution to the rescue: using comparative genomics to understand long non-coding RNAs , 2016, Nature Reviews Genetics.

[9]  Mario Stanke,et al.  Simultaneous gene finding in multiple genomes , 2016, Bioinform..

[10]  A. Kriegstein,et al.  A Primate lncRNA Mediates Notch Signaling during Neuronal Development by Sequestering miRNA , 2016, Neuron.

[11]  Andrew D. Rouillard,et al.  Enrichr: a comprehensive gene set enrichment analysis web server 2016 update , 2016, Nucleic Acids Res..

[12]  Max A. Horlbeck,et al.  Single-cell analysis of long non-coding RNAs in the developing human neocortex , 2016, Genome Biology.

[13]  F. Gage,et al.  2D and 3D Stem Cell Models of Primate Cortical Development Identify Species-Specific Differences in Progenitor Behavior Contributing to Brain Size , 2016, Cell stem cell.

[14]  Nick Barker,et al.  Organoids as an in vitro model of human development and disease , 2016, Nature Cell Biology.

[15]  Madeline A. Lancaster,et al.  Human cerebral organoids recapitulate gene expression programs of fetal neocortex development , 2015, Proceedings of the National Academy of Sciences.

[16]  Alexandro E. Trevino,et al.  Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex , 2014, Nature.

[17]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[18]  Madeline A. Lancaster,et al.  Cerebral organoids model human brain development and microcephaly , 2013, Nature.

[19]  B. Finlay,et al.  Modeling Transformations of Neurodevelopmental Sequences across Mammalian Species , 2013, The Journal of Neuroscience.

[20]  David G. Knowles,et al.  The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression , 2012, Genome research.

[21]  Chris P. Ponting,et al.  Rapid Turnover of Long Noncoding RNAs and the Evolution of Gene Expression , 2012, PLoS genetics.

[22]  M. Ritchie,et al.  Faculty Opinions recommendation of Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. , 2012 .

[23]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[24]  Michael F. Lin,et al.  Systematic identification of long noncoding RNAs expressed during zebrafish embryogenesis. , 2012, Genome research.

[25]  Thomas R. Gingeras,et al.  Molecular biology: RNA discrimination , 2012, Nature.

[26]  D. Bartel,et al.  Conserved Function of lincRNAs in Vertebrate Embryonic Development despite Rapid Sequence Evolution , 2011, Cell.

[27]  Cole Trapnell,et al.  Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. , 2011, Genes & development.

[28]  Colin N. Dewey,et al.  RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome , 2011, BMC Bioinformatics.

[29]  J. Rinn,et al.  lincRNAs act in the circuitry controlling pluripotency and differentiation , 2011, Nature.

[30]  David Haussler,et al.  Cactus: Algorithms for genome multiple sequence alignment. , 2011, Genome research.

[31]  Yasuko Matsumura,et al.  A more efficient method to generate integration-free human iPS cells , 2011, Nature Methods.

[32]  Howard Y. Chang,et al.  A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression , 2011, Nature.

[33]  Albert J. Vilella,et al.  Comparative and demographic analysis of orang-utan genomes , 2011, Nature.

[34]  Sibum Sung,et al.  Vernalization-Mediated Epigenetic Silencing by a Long Intronic Noncoding RNA , 2011, Science.

[35]  J. Rinn,et al.  Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells , 2010, Nature Genetics.

[36]  T. Derrien,et al.  Long Noncoding RNAs with Enhancer-like Function in Human Cells , 2010, Cell.

[37]  Cole Trapnell,et al.  Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. , 2010, Nature biotechnology.

[38]  T. Borodina,et al.  Transcriptome analysis by strand-specific sequencing of complementary DNA , 2009, Nucleic acids research.

[39]  J. Rinn,et al.  Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression , 2009, Proceedings of the National Academy of Sciences.

[40]  Moustapha Kassem,et al.  Teratoma formation by human embryonic stem cells is site dependent and enhanced by the presence of Matrigel. , 2009, Stem cells and development.

[41]  Jennifer A. Mitchell,et al.  The Air Noncoding RNA Epigenetically Silences Transcription by Targeting G9a to Chromatin , 2008, Science.

[42]  Yoshiki Sasai,et al.  Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. , 2008, Cell stem cell.

[43]  Jeannie T. Lee,et al.  Polycomb Proteins Targeted by a Short Repeat RNA to the Mouse X Chromosome , 2008, Science.

[44]  J. Komorowski,et al.  Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. , 2008, Molecular cell.

[45]  Paulo P. Amaral,et al.  Noncoding RNA in development , 2008, Mammalian Genome.

[46]  David Haussler,et al.  Using native and syntenically mapped cDNA alignments to improve de novo gene finding , 2008, Bioinform..

[47]  B. Horsthemke,et al.  C15orf2 and a novel noncoding transcript from the Prader-Willi/Angelman syndrome region show monoallelic expression in fetal brain. , 2007, Genomics.

[48]  C. Ponting,et al.  Functionality or transcriptional noise? Evidence for selection within long noncoding RNAs. , 2007, Genome research.

[49]  K. Struhl Transcriptional noise and the fidelity of initiation by RNA polymerase II , 2007, Nature Structural &Molecular Biology.

[50]  C. Dehay,et al.  Cell Cycle Features of Primate Embryonic Stem Cells , 2006, Stem cells.

[51]  T. Hughes,et al.  A systematic search for new mammalian noncoding RNAs indicates little conserved intergenic transcription , 2005, BMC Genomics.

[52]  S. Batalov,et al.  A gene atlas of the mouse and human protein-encoding transcriptomes. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[53]  J A Thomson,et al.  Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. , 2000, Developmental biology.

[54]  S. Rastan,et al.  Requirement for Xist in X chromosome inactivation , 1996, Nature.

[55]  S. Tilghman,et al.  Disruption of imprinting caused by deletion of the H19 gene region in mice , 1995, Nature.

[56]  R. Lacy,et al.  Patience is a virtue. , 1994, Caring : National Association for Home Care magazine.

[57]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[58]  Ira M. Hall,et al.  BEDTools: a flexible suite of utilities for comparing genomic features , 2010, Bioinform..

[59]  J. Mattick,et al.  Rapid evolution of noncoding RNAs: lack of conservation does not mean lack of function. , 2006, Trends in genetics : TIG.