Perfluorocarbon‐Based 19F MRI Nanoprobes for In Vivo Multicolor Imaging

Abstract In vivo multicolor imaging is important for monitoring multiple biomolecular or cellular processes in biology. 19F magnetic resonance imaging (MRI) is an emerging in vivo imaging technique because it can non‐invasively visualize 19F nuclei without endogenous background signals. Therefore, 19F MRI probes capable of multicolor imaging are in high demand. Herein, we report five types of perfluorocarbon‐encapsulated silica nanoparticles that show 19F NMR peaks with different chemical shifts. Three of the nanoprobes, which show spectrally distinct 19F NMR peaks with sufficient sensitivity, were selected for in vivo multicolor 19F MRI. The nanoprobes exhibited 19F MRI signals with three colors in a living mouse. Our in vivo multicolor system could be utilized for evaluating the effect of surface functional groups on the hepatic uptake in a mouse. This novel multicolor imaging technology will be a practical tool for elucidating in vivo biomolecular networks by 19F MRI.

[1]  K. Kikuchi,et al.  Sensing caspase-1 activity using activatable 19F MRI nanoprobes with improved turn-on kinetics. , 2018, Chemical communications.

[2]  A. Bar‐Shir,et al.  Calcium Fluoride Nanocrystals: Tracers for In Vivo 19 F Magnetic Resonance Imaging. , 2018, Angewandte Chemie.

[3]  Cheng Zhang,et al.  A unique 19F MRI agent for the tracking of non phagocytic cells in vivo. , 2018, Nanoscale.

[4]  K. Kikuchi,et al.  Highly Sensitive Detection of Caspase-3/7 Activity in Living Mice Using Enzyme-Responsive 19F MRI Nanoprobes. , 2018, Bioconjugate chemistry.

[5]  Shizhen Chen,et al.  In vivo drug tracking with 19F MRI at therapeutic dose. , 2018, Chemical communications.

[6]  Mikhail G. Shapiro,et al.  Acoustically modulated magnetic resonance imaging of gas-filled protein nanostructures , 2018, Nature Materials.

[7]  M. Ueda,et al.  Intracellular Protein-Labeling Probes for Multicolor Single-Molecule Imaging of Immune Receptor-Adaptor Molecular Dynamics. , 2017, Journal of the American Chemical Society.

[8]  J. Valliant,et al.  18F-Labeled perfluorocarbon droplets for positron emission tomography imaging. , 2017, Nuclear medicine and biology.

[9]  Ian D. McGilvray,et al.  Mechanism of hard nanomaterial clearance by the liver , 2016, Nature materials.

[10]  Roger Y. Tsien,et al.  Paramagnetic fluorinated nanoemulsions for sensitive cellular fluorine-19 magnetic resonance imaging , 2016, Nature materials.

[11]  Mauro Ferrari,et al.  Principles of nanoparticle design for overcoming biological barriers to drug delivery , 2015, Nature Biotechnology.

[12]  K. Kikuchi,et al.  Mesoporous silica nanoparticles for 19F magnetic resonance imaging, fluorescence imaging, and drug delivery† †Electronic supplementary information (ESI) available: Detailed synthetic procedure, experimental procedure and Fig. S1–S7. See DOI: 10.1039/c4sc03549f Click here for additional data file. , 2014, Chemical science.

[13]  Nirbhay N. Yadav,et al.  Single 19F Probe for Simultaneous Detection of Multiple Metal Ions Using miCEST MRI , 2014, Journal of the American Chemical Society.

[14]  Giuseppe Baselli,et al.  A superfluorinated molecular probe for highly sensitive in vivo(19)F-MRI. , 2014, Journal of the American Chemical Society.

[15]  K. Kikuchi,et al.  Multifunctional core–shell silica nanoparticles for highly sensitive (19)F magnetic resonance imaging. , 2014, Angewandte Chemie.

[16]  O. Togao,et al.  Multi-chromatic pH-activatable 19F-MRI nanoprobes with binary ON/OFF pH transitions and chemical-shift barcodes. , 2013, Angewandte Chemie.

[17]  V. Verkhusha,et al.  Near-infrared fluorescent proteins for multicolor in vivo imaging , 2013, Nature Methods.

[18]  J. Bulte,et al.  In vivo multicolor molecular MR imaging using diamagnetic chemical exchange saturation transfer liposomes , 2012, Magnetic resonance in medicine.

[19]  Peter M. Jakob,et al.  In Vivo Imaging of Stepwise Vessel Occlusion in Cerebral Photothrombosis of Mice by 19F MRI , 2011, PloS one.

[20]  Jesse V Jokerst,et al.  Nanoparticle PEGylation for imaging and therapy. , 2011, Nanomedicine.

[21]  Arend Heerschap,et al.  Customizable, multi-functional fluorocarbon nanoparticles for quantitative in vivo imaging using 19F MRI and optical imaging. , 2010, Biomaterials.

[22]  D. Le Bihan,et al.  A new paradigm for high‐sensitivity 19F magnetic resonance imaging of perfluorooctylbromide , 2010, Magnetic resonance in medicine.

[23]  K. Hong,et al.  Multiplexed imaging of therapeutic cells with multispectrally encoded magnetofluorescent nanocomposite emulsions. , 2009, Journal of the American Chemical Society.

[24]  J. Bulte,et al.  New “multicolor” polypeptide diamagnetic chemical exchange saturation transfer (DIACEST) contrast agents for MRI , 2008, Magnetic resonance in medicine.

[25]  R. W. Draft,et al.  Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system , 2007, Nature.

[26]  S. Caruthers,et al.  19F magnetic resonance imaging for stem/progenitor cell tracking with multiple unique perfluorocarbon nanobeacons , 2007, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[27]  Eric T Ahrens,et al.  In vivo imaging platform for tracking immunotherapeutic cells , 2005, Nature Biotechnology.

[28]  G. Cavallo,et al.  Magnetic Resonance Imaging ( MRI ) : From Design of Materials to Clinical Applications , 2014 .