A mathematical study of the evolution of fouling and operating parameters throughout membrane sheets comprising spiral wound modules

Abstract Local experimental data on key process parameters, throughout membrane sheets of spiral-wound membrane (SWM) elements, are unavailable and very difficult to obtain; therefore, theoretical models are essential to better understand the evolution of fouling, which is helpful for improving design and operation of these modules. The mathematical model, formulated in a fundamental manner herein, takes into account the spatial flow field non-uniformities inside narrow channels with spacers (simulating SWM elements) and their interaction with the evolving deposits. A realistic meso-scale transient model, typical of the early stages of organic membrane fouling, is employed. Appropriate non-dimensionalization of model equations allows to treat separately the two (practically significant) cases of constant inlet pressure and constant average permeate flux. Several simplified cases are examined, for specific dimensionless parameter values, and asymptotic solutions are derived. The results of this analysis have guided the development of very efficient numerical techniques, most useful for future extensions towards the development of a comprehensive modeling tool, appropriate for module design calculations and for assessing detailed experimental data.

[1]  S. G. Yiantsios,et al.  Colloidal fouling of RO membranes: an overview of key issues and efforts to develop improved prediction techniques , 2005 .

[2]  Margaritis Kostoglou,et al.  On the Fluid Mechanics of Spiral-Wound Membrane Modules , 2009 .

[3]  Franco Evangelista,et al.  An improved analytical method for the design of spiral-wound modules , 1988 .

[4]  S. G. Yiantsios,et al.  Direct numerical simulation of flow in spacer-filled channels: Effect of spacer geometrical characteristics , 2007 .

[5]  Andrea I. Schäfer,et al.  Nanofiltration of Natural Organic Matter: Removal, Fouling and the Influence of Multivalent Ions , 1998 .

[6]  Jim C Chen,et al.  Monte Carlo simulation of colloidal membrane filtration: principal issues for modeling. , 2006, Advances in colloid and interface science.

[7]  M. V. van Loosdrecht,et al.  Biofouling of spiral-wound nanofiltration and reverse osmosis membranes: a feed spacer problem. , 2009, Water research.

[8]  David F. Fletcher,et al.  Spiral wound modules and spacers - Review and analysis , 2004 .

[9]  S. G. Yiantsios,et al.  Numerical simulation of the flow in a plane-channel containing a periodic array of cylindrical turbulence promoters , 2004 .

[10]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[11]  Vivek V. Ranade,et al.  Computational Flow Modeling for Chemical Reactor Engineering , 2001 .

[12]  Yuriy S. Polyakov,et al.  Deadend outside-in hollow fiber membrane filter: Mathematical model , 2006 .

[13]  S. G. Yiantsios,et al.  Organic fouling of RO membranes: investigating the correlation of RO and UF fouling resistances for predictive purposes. , 2010 .

[14]  Dianne E. Wiley,et al.  Review of 3D CFD modeling of flow and mass transfer in narrow spacer-filled channels in membrane modules , 2010 .

[15]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[16]  Vicki Chen,et al.  Fouling mechanisms of alginate solutions as model extracellular polymeric substances , 2005 .

[17]  B. Ruth,et al.  Correlating Filtration Theory with Industrial Practice. , 1946 .

[18]  Margaritis Kostoglou,et al.  Incipient crystallization of sparingly soluble salts on membrane surfaces: The case of dead-end filtration with no agitation , 2011 .

[19]  Herve Morvan,et al.  CFD simulations of flow and concentration polarization in spacer-filled channels for application to water desalination , 2008 .

[20]  Eric M.V. Hoek,et al.  Modeling the impacts of feed spacer geometry on reverse osmosis and nanofiltration processes , 2009 .

[21]  S. G. Yiantsios,et al.  A numerical and experimental study of mass transfer in spacer-filled channels: Effects of spacer geometrical characteristics and Schmidt number , 2009 .

[22]  Margaritis Kostoglou,et al.  Mathematical Analysis of the Meso-Scale Flow Field in Spiral-Wound Membrane Modules , 2011 .

[23]  M. Elimelech,et al.  Cake-enhanced concentration polarization: a new fouling mechanism for salt-rejecting membranes. , 2003, Environmental science & technology.

[24]  Gunnar Eigil Jonsson,et al.  OPTIMAL DESIGN AND PERFORMANCE OF SPIRAL WOUND MODULES II: ANALYTICAL METHOD , 1988 .

[25]  Renbi Bai,et al.  An assessment of the conventional cake filtration theory , 2003 .

[26]  M. Elimelech,et al.  Relating organic fouling of reverse osmosis membranes to intermolecular adhesion forces. , 2006, Environmental science & technology.

[27]  S. Sundaramoorthy,et al.  An analytical model for spiral wound reverse osmosis membrane modules: Part I — Model development and parameter estimation , 2011 .

[28]  E. Vorobiev Derivation of filtration equations incorporating the effect of pressure redistribution on the cake-medium interface : A constant pressure filtration , 2006 .

[29]  David Hasson,et al.  Inception of CaSO4 scaling on RO membranes at various water recovery levels , 2001 .

[30]  A. Karabelas,et al.  A study of CaCO3 scale formation and inhibition in RO and NF membrane processes , 2007 .

[31]  S. G. Yiantsios,et al.  Relation between fouling characteristics of RO and UF membranes in experiments with colloidal organic and inorganic species , 2010 .

[32]  Vivek V. Ranade,et al.  Comparison of flow structures in spacer-filled flat and annular channels⁎ , 2006 .