Crystal chemistry of Na insertion/deinsertion in FePO4–NaFePO4

In this paper we examine the mechanism of Na insertion and extraction in the FePO4–NaFePO4 system. Chemical preparation of the intermediate Na1−xFePO4 phase has revealed the existence of a range of stable compositions with different Na+/vacancy arrangements. The mechano-chemical aspects of the charge and discharge reactions are also discussed.

[1]  Gerbrand Ceder,et al.  Electrochemical Properties of Monoclinic NaNiO2 , 2011 .

[2]  Philippe Moreau,et al.  Structure and Stability of Sodium Intercalated Phases in Olivine FePO4 , 2010 .

[3]  Jean-Marie Tarascon,et al.  Na2Ti3O7: Lowest voltage ever reported oxide insertion electrode for sodium ion batteries , 2011 .

[4]  Anubhav Jain,et al.  Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials , 2011 .

[5]  D. Murphy,et al.  The crystal structures of the lithium-inserted metal oxides Li0.5TiO2 anatase, LiTi2O4 spinel, and Li2Ti2O4 , 1984 .

[6]  Teófilo Rojo,et al.  Na-ion batteries, recent advances and present challenges to become low cost energy storage systems , 2012 .

[7]  T. Ohzuku,et al.  Topotactic Two‐Phase Reaction of Ruthenium Dioxide (Rutile) in Lithium Nonaqueous Cell , 1990 .

[8]  D Carlier,et al.  Electrochemical investigation of the P2–NaxCoO2 phase diagram. , 2011, Nature materials.

[9]  Montse Casas-Cabanas,et al.  Existence of superstructures due to large amounts of Fe vacancies in the LiFePO4-type framework , 2011 .

[10]  K. Zaghib,et al.  Characterization of Na-based phosphate as electrode materials for electrochemical cells , 2011 .

[11]  N. Morimoto,et al.  Superstructure of laihunite-3M ( (sub 0.40) Fe (super 2+) (sub 0.80) Fe (super 3+) (sub 0.80) SiO 4 ) , 1986 .

[12]  Linda F. Nazar,et al.  Topochemical Synthesis of Sodium Metal Phosphate Olivines for Sodium-Ion Batteries , 2011 .