Elucidating the Nature of Fe Species during Pyrolysis of the Fe-BTC MOF into Highly Active and Stable Fischer–Tropsch Catalysts

In this combined in situ XAFS, DRIFTS, and Mossbauer study, we elucidate the changes in structural, electronic, and local environments of Fe during pyrolysis of the metal organic framework Fe-BTC toward highly active and stable Fischer–Tropsch synthesis (FTS) catalysts (Fe@C). Fe-BTC framework decomposition is characterized by decarboxylation of its trimesic acid linker, generating a carbon matrix around Fe nanoparticles. Pyrolysis of Fe-BTC at 400 °C (Fe@C-400) favors the formation of highly dispersed epsilon carbides (e′-Fe2.2C, dp = 2.5 nm), while at temperatures of 600 °C (Fe@C-600), mainly Hagg carbides are formed (χ-Fe5C2, dp = 6.0 nm). Extensive carburization and sintering occur above these temperatures, as at 900 °C the predominant phase is cementite (θ-Fe3C, dp = 28.4 nm). Thus, the loading, average particle size, and degree of carburization of Fe@C catalysts can be tuned by varying the pyrolysis temperature. Performance testing in high-temperature FTS (HT-FTS) showed that the initial turnover fr...

[1]  Jungil Yang,et al.  A new synthesis of carbon encapsulated Fe5C2 nanoparticles for high-temperature Fischer-Tropsch synthesis. , 2015, Nanoscale.

[2]  Wei Xia,et al.  Metal–organic frameworks and their derived nanostructures for electrochemical energy storage and conversion , 2015 .

[3]  F. Gelardi,et al.  Structure of the FeBTC Metal–Organic Framework: A Model Based on the Local Environment Study , 2015 .

[4]  F. Kapteijn,et al.  Metal organic framework-mediated synthesis of highly active and stable Fischer-Tropsch catalysts , 2015, Nature Communications.

[5]  S. Ashbrook,et al.  Mixed-metal MIL-100(Sc,M) (M=Al, Cr, Fe) for Lewis acid catalysis and tandem C-C bond formation and alcohol oxidation. , 2014, Chemistry.

[6]  F. Kapteijn,et al.  Adsorptive characterization of porous solids: Error analysis guides the way , 2014 .

[7]  Yi‐nan Wu,et al.  Magnetic metal-organic frameworks: γ-Fe2O3@MOFs via confined in situ pyrolysis method for drug delivery. , 2014, Small.

[8]  T. Maji,et al.  In‐situ Stabilization of Tin Nanoparticles in Porous Carbon Matrix derived from Metal Organic Framework: High Capacity and High Rate Capability Anodes for Lithium‐ion Batteries , 2014 .

[9]  M. Oh,et al.  One-pot synthesis of magnetic particle-embedded porous carbon composites from metal-organic frameworks and their sorption properties. , 2014, Chemical communications.

[10]  F. Kapteijn,et al.  Metal Organic Framework Catalysis: Quo vadis? , 2014 .

[11]  Hua Zhang,et al.  Metal oxide-coated three-dimensional graphene prepared by the use of metal-organic frameworks as precursors. , 2014, Angewandte Chemie.

[12]  Qiang Xu,et al.  From assembled metal-organic framework nanoparticles to hierarchically porous carbon for electrochemical energy storage. , 2014, Chemical communications.

[13]  A. G. Roca,et al.  Fe K-Edge X-ray Absorption Spectroscopy Study of Nanosized Nominal Magnetite , 2014 .

[14]  K. P. Jong,et al.  Catalysts for Production of Lower Olefins from Synthesis Gas: A Review , 2013 .

[15]  Jinpeng Han,et al.  Sulfur embedded in metal organic framework-derived hierarchically porous carbon nanoplates for high performance lithium–sulfur battery , 2013 .

[16]  F. Kapteijn,et al.  Breaking the Fischer-Tropsch synthesis selectivity: direct conversion of syngas to gasoline over hierarchical Co/H-ZSM-5 catalysts† , 2013 .

[17]  A. Morsali,et al.  Applications of metal–organic coordination polymers as precursors for preparation of nano-materials , 2012 .

[18]  Dan Zhao,et al.  Iron imidazolate framework as precursor for electrocatalysts in polymer electrolyte membrane fuel cells , 2012 .

[19]  K. D. de Jong,et al.  Iron particle size effects for direct production of lower olefins from synthesis gas. , 2012, Journal of the American Chemical Society.

[20]  C. Serre,et al.  Discovering the active sites for C3 separation in MIL-100(Fe) by using operando IR spectroscopy. , 2012, Chemistry.

[21]  H. García,et al.  Comparison of Porous Iron Trimesates Basolite F300 and MIL-100(Fe) As Heterogeneous Catalysts for Lewis Acid and Oxidation Reactions: Roles of Structural Defects and Stability , 2012 .

[22]  J. Lee,et al.  MIL-100(V) – A mesoporous vanadium metal organic framework with accessible metal sites , 2012 .

[23]  J. Lee,et al.  Large scale fluorine-free synthesis of hierarchically porous iron(III) trimesate MIL-100(Fe) with a zeolite MTN topology , 2012 .

[24]  Cheng Wang,et al.  Metal‐Organic Framework Templated Synthesis of Fe2O3/TiO2 Nanocomposite for Hydrogen Production , 2012, Advanced materials.

[25]  Juan Herranz,et al.  Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells. , 2011, Nature communications.

[26]  Tomoki Akita,et al.  From metal-organic framework to nanoporous carbon: toward a very high surface area and hydrogen uptake. , 2011, Journal of the American Chemical Society.

[27]  Jiujun Zhang,et al.  Carbon-Supported Fe–Nx Catalysts Synthesized by Pyrolysis of the Fe(II)–2,3,5,6-Tetra(2-pyridyl)pyrazine Complex: Structure, Electrochemical Properties, and Oxygen Reduction Reaction Activity , 2011 .

[28]  C. Serre,et al.  Infrared study of the influence of reducible iron(III) metal sites on the adsorption of CO, CO2, propane, propene and propyne in the mesoporous metal-organic framework MIL-100. , 2011, Physical chemistry chemical physics : PCCP.

[29]  A. Singh,et al.  Characterization of γ- and α-Fe 2 O 3 nano powders synthesized by emulsion precipitation-calcination route and rheological behaviour of α-Fe 2 O 3 , 2011 .

[30]  Ann V. Call,et al.  Cobalt imidazolate framework as precursor for oxygen reduction reaction electrocatalysts. , 2011, Chemistry.

[31]  L. Tong,et al.  Magnetic properties of nanocrystalline Fe/Fe3C composites , 2011 .

[32]  A. Beale,et al.  Stability and reactivity of ϵ-χ-θ iron carbide catalyst phases in Fischer-Tropsch synthesis: controlling μ(C). , 2010, Journal of the American Chemical Society.

[33]  M. Sluiter,et al.  Origin of predominance of cementite among iron carbides in steel at elevated temperature. , 2010, Physical review letters.

[34]  Xin-bo Zhang,et al.  Metal–organic framework (MOF) as a template for syntheses of nanoporous carbons as electrode materials for supercapacitor , 2010 .

[35]  Kangnian Fan,et al.  Fe(x)O(y)@C spheres as an excellent catalyst for Fischer-Tropsch synthesis. , 2010, Journal of the American Chemical Society.

[36]  Martin R. Lohe,et al.  Metal-organic framework (MOF) aerogels with high micro- and macroporosity. , 2009, Chemical communications.

[37]  A. Beale,et al.  Local and long range order in promoted iron-based Fischer–Tropsch catalysts: A combined in situ X-ray absorption spectroscopy/wide angle X-ray scattering study , 2009 .

[38]  B. Weckhuysen,et al.  The renaissance of iron-based Fischer-Tropsch synthesis: on the multifaceted catalyst deactivation behaviour. , 2008, Chemical Society reviews.

[39]  T. Akita,et al.  Metal-organic framework as a template for porous carbon synthesis. , 2008, Journal of the American Chemical Society.

[40]  C. Serre,et al.  Synthesis and catalytic properties of MIL-100(Fe), an iron(III) carboxylate with large pores. , 2007, Chemical communications.

[41]  T. Maniecki,et al.  Reduction behavior of iron oxides in hydrogen and carbon monoxide atmospheres , 2007 .

[42]  Gérard Férey,et al.  Creation of controlled brønsted acidity on a zeotypic mesoporous chromium(III) carboxylate by grafting water and alcohol molecules , 2007 .

[43]  P. Bruce,et al.  Synthesis of ordered mesoporous Fe3O4 and gamma-Fe2O3 with crystalline walls using post-template reduction/oxidation. , 2006, Journal of the American Chemical Society.

[44]  R. Lago,et al.  Highly reactive species formed by interface reaction between Fe0–iron oxides particles: An efficient electron transfer system for environmental applications , 2006 .

[45]  C. Serre,et al.  Investigation of acid sites in a zeotypic giant pores chromium(III) carboxylate. , 2006, Journal of the American Chemical Society.

[46]  J. Maier,et al.  On the Tammann–Rule , 2005 .

[47]  Udo Schwertmann,et al.  Thermodynamics of iron oxides: Part III. Enthalpies of formation and stability of ferrihydrite (~Fe( , 2004 .

[48]  Enrique Iglesia,et al.  Promoted iron-based catalysts for the Fischer-Tropsch synthesis: Design, synthesis, site densities, and catalytic properties , 2002 .

[49]  M. Dry,et al.  The Fischer–Tropsch process: 1950–2000 , 2002 .

[50]  Rajamani Krishna,et al.  Fundamentals and selection of advanced Fischer-Tropsch reactors , 1999 .

[51]  Andre Peter Steynberg,et al.  High temperature Fischer–Tropsch synthesis in commercial practice , 1999 .

[52]  Hans Schulz,et al.  Short history and present trends of Fischer–Tropsch synthesis , 1999 .

[53]  Abhaya K. Datye,et al.  Activation of Precipitated Iron Fischer-Tropsch Synthesis Catalysts , 1995 .

[54]  B. Jager,et al.  Advances in low temperature Fischer-Tropsch synthesis , 1995 .

[55]  Jens R. Rostrup-Nielsen,et al.  Catalysis and large-scale conversion of natural gas , 1994 .

[56]  Toshimitsu Suzuki,et al.  Iron-catalyzed gasification of char in carbon dioxide , 1988 .

[57]  C. McCammon,et al.  Mössbauer spectra of FexO (x>0.95) , 1985 .

[58]  M. Dirand,et al.  Identification structurale precise des carbures precipites dans les aciers faiblement allies aux divers stades du revenu, mecanismes de precipitation , 1983 .

[59]  J. Niemantsverdriet,et al.  On the time-dependent behavior of iron catalysts in Fischer-Tropsch synthesis , 1981 .

[60]  J. Niemantsverdriet,et al.  Behavior of metallic iron catalysts during Fischer-Tropsch synthesis studied with Mössbauer spectroscopy, X-ray diffraction, carbon content determination, and reaction kinetic measurements , 1980 .

[61]  S. Nagakura Study of Metallic Carbides by Electron Diffraction Part III. Iron Carbides , 1959 .