Bayesian Registration of Functions and Curves

Bayesian analysis of functions and curves is considered, where warping and other geometrical transformations are often required for meaningful comparisons. We focus on two applications involving the classification of mo use vertebrae shape outlines and the alignment of mass spectrometry data in proteomics. The functions and curves of interest are represented using the recently introduced s quare root velocity function, which enables a warping invariant elastic distance to be calculated in a straightfor- ward manner. We distinguish between various spaces of interest: the original space, the ambient space after standardizing, and the quotient space after removing a group of transformations. Using Gaussian process models in the ambient space and Dirichlet priors for the warping functions, we explore Bayesian inference for curves and func- tions. Markov chain Monte Carlo algorithms are introduced for simulating from the posterior, including simulated tempering for multimodal posteriors. We also compare ambient and quotient space estimators for mean shape, and explain their frequent simi- larity in many practical problems using a Laplace approximation. A simulation study is carried out, as well as shape classification of the mouse vert ebra outlines and practical alignment of the mass spectrometry functions. MSC 2010 subject classifications: Primary 62F15, 62P10.

[1]  K. Mardia,et al.  Statistical Shape Analysis , 1998 .

[2]  Ninad Thakoor,et al.  Hidden Markov Model-Based Weighted Likelihood Discriminant for 2-D Shape Classification , 2007, IEEE Transactions on Image Processing.

[3]  L Molinari,et al.  An analysis of the mid-growth and adolescent spurts of height based on acceleration. , 1985, Annals of human biology.

[4]  K. Mardia,et al.  Size and shape analysis of landmark data , 1992 .

[5]  Anuj Srivastava,et al.  A Novel Representation for Riemannian Analysis of Elastic Curves in Rn , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[6]  Gareth M. James Curve alignment by moments , 2007, 0712.1425.

[7]  Wilfrid S. Kendall,et al.  The Diffusion of Euclidean Shape , 1990 .

[8]  Roger Woodard,et al.  Interpolation of Spatial Data: Some Theory for Kriging , 1999, Technometrics.

[9]  Anuj Srivastava,et al.  Statistical Shape Analysis , 2014, Computer Vision, A Reference Guide.

[10]  K. Mardia,et al.  General shape distributions in a plane , 1991, Advances in Applied Probability.

[11]  Huiling Le,et al.  The Riemannian Structure of Shape Spaces , 2008 .

[12]  Stephen G. Walker,et al.  Sampling the Dirichlet Mixture Model with Slices , 2006, Commun. Stat. Simul. Comput..

[13]  H. Karcher Riemannian center of mass and mollifier smoothing , 1977 .

[14]  B. Silverman,et al.  A multiresolution approach to time warping achieved by a Bayesian prior–posterior transfer fitting strategy , 2010 .

[15]  Y. Amit,et al.  Towards a coherent statistical framework for dense deformable template estimation , 2007 .

[16]  Anuj Srivastava,et al.  Analysis of planar shapes using geodesic paths on shape spaces , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Ian L. Dryden,et al.  Bayesian matching of unlabelled point sets using Procrustes and configuration models , 2010, 1009.3072.

[18]  Wen Cheng,et al.  Analysis of proteomics data: Bayesian alignment of functions , 2014 .

[19]  Bernard W. Silverman,et al.  Incorporating parametric effects into functional principal components analysis , 1995 .

[20]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[21]  Huiling Le,et al.  A stochastic calculus approach to the shape distribution induced by a complex normal model , 1991, Mathematical Proceedings of the Cambridge Philosophical Society.

[22]  J. Marron,et al.  Registration of Functional Data Using Fisher-Rao Metric , 2011, 1103.3817.

[23]  Anuj Srivastava,et al.  Elastic Shape Matching of Parameterized Surfaces Using Square Root Normal Fields , 2012, ECCV.

[24]  I. Dryden,et al.  Bayesian matching of unlabeled marked point sets using random fields, with an application to molecular alignment , 2011, 1203.0098.

[25]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[26]  Laurent Younes,et al.  Computable Elastic Distances Between Shapes , 1998, SIAM J. Appl. Math..

[27]  Robert B. Gramacy,et al.  Importance tempering , 2007, Stat. Comput..

[28]  Lurdes Y. T. Inoue,et al.  Bayesian Hierarchical Curve Registration , 2008 .

[29]  J. Ramsay,et al.  Curve registration by local regression , 2000 .

[30]  M. Fréchet Les éléments aléatoires de nature quelconque dans un espace distancié , 1948 .

[31]  L Molinari,et al.  Analysis of the growth spurt at age seven (mid-growth spurt). , 1980, Helvetica paediatrica acta.

[32]  K. Mardia,et al.  The statistical analysis of shape data , 1989 .

[33]  Nagi Gebraeel,et al.  A Functional Time Warping Approach to Modeling and Monitoring Truncated Degradation Signals , 2014, Technometrics.

[34]  Anuj Srivastava,et al.  Shape Analysis of Elastic Curves in Euclidean Spaces , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[35]  C. Goodall Procrustes methods in the statistical analysis of shape , 1991 .

[36]  A. Munk,et al.  INTRINSIC SHAPE ANALYSIS: GEODESIC PCA FOR RIEMANNIAN MANIFOLDS MODULO ISOMETRIC LIE GROUP ACTIONS , 2007 .

[37]  Alain Trouvé,et al.  Bayesian Consistent Estimation in Deformable Models using Stochastic Algorithms: Applications to Medical Images , 2010 .

[38]  Stephen G. Walker,et al.  Slice sampling mixture models , 2011, Stat. Comput..

[39]  J. Marron,et al.  Proteomics profiles from mass spectrometry , 2014 .

[40]  G. Glover Deconvolution of Impulse Response in Event-Related BOLD fMRI1 , 1999, NeuroImage.

[41]  J. Ramsay,et al.  Curve registration , 2018, Oxford Handbooks Online.

[42]  R. Bhattacharya,et al.  Large sample theory of intrinsic and extrinsic sample means on manifolds--II , 2005, math/0507423.

[43]  Lancelot F. James,et al.  Gibbs Sampling Methods for Stick-Breaking Priors , 2001 .

[44]  Tim Hesterberg,et al.  Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.

[45]  D. Kendall SHAPE MANIFOLDS, PROCRUSTEAN METRICS, AND COMPLEX PROJECTIVE SPACES , 1984 .

[46]  T. Gasser,et al.  Statistical Tools to Analyze Data Representing a Sample of Curves , 1992 .

[47]  H. Müller,et al.  Pairwise curve synchronization for functional data , 2008 .

[48]  C. Geyer,et al.  Annealing Markov chain Monte Carlo with applications to ancestral inference , 1995 .

[49]  T. K. Carne,et al.  Shape and Shape Theory , 1999 .

[50]  D. Kendall,et al.  The Riemannian Structure of Euclidean Shape Spaces: A Novel Environment for Statistics , 1993 .