Simulation of orthodontic tooth movements

Orthodontic tooth movements are based on the ability of bone to react to mechanical stresses with the apposition and resorption of alveolar bone. Currently, the underlying biophysical, biochemical, and cellular processes are the subject of numerous studies. At present, however, an analytical description of orthodontic tooth movements including all components of the processes involved seems to be impossible. It was the aim of the present study to develop a mechanics-based phenomenological model capable of describing the alveolar bone remodeling.Thus, 2 different models were developed. The first is based on the assumption that deformations of the periodontal ligament (PDL) are the key stimulus to starting orthodontic tooth movement. The second supposes that deformations of the alveolar bone are the basis of orthodontic bone remodeling. Both models were integrated into a finite element package calculating stresses, strains and deformations of tooth and tooth supporting structures and from this simulating the movement of the tooth and its alveolus through the bone. Clinically induced canine retractions in 5 patients as well as force systems were exactly measured and the tooth movements were simulated using both models.The results show that the first model allows reliable simulation of orthodontic tooth movements, whereas the second is to be rejected.ZusammenfassungKieferorthopädische Zahnbewegungen beruhen auf der Fähigkeit des Knochens, auf äußere mechanische Reize mit einem Umbau des Kieferknochens zu reagieren. Die zugrundeliegenden Vorgänge laufen auf biophysikalischer, biochemischer und zellulärer Ebene ab und sind derzeit Gegenstand zahlreicher Untersuchungen. Eine geschlossene Beschreibung aller an der Zahnbewegung beteiligten Prozesse durch ein analytisches modell erscheint aufgrund der Komplexität zur Zeit nicht möglich. Wesentliche Erkenntnisse können jedoch bereits gewonnen werden, wenn es gelingt, ein auf der Mechanik basierendes Simulationsmodell aufzustellen, das die Knochenumbauvorgänge phänomenologisch darstellt.Zur Beschreibung der orthodontischen Zahnbewegung wurden daher zwei Modelle entwickelt. Grundlage des ersten Modells ist die Annahme, daß der mechanische Schlüsselreiz in Deformationen des parodontalen Ligaments zu sehen ist. Das zweite Modell basiert auf der Hypothese, daß Deformationen der Alveolarwand zum Knochenumbau und damit zur orthodontischen Zahnbewegung beitragen. Diese Modelle wurden in ein Finite-Elemente-Programmsystem integriert, das die Berechnung von Spannungen sowie Deformationen von Zahn und Zahnhalteapparat ermöglicht und hieraus die Bewegung des Zahns durch den Knochen berechnet. Zur Verifizierung wurden bei fünf Patienten Eckzahnretraktionen sowie die klinisch eingesetzten Kraftsysteme genau vermessen und mit Hilfe beider Modelle simuliert.Die Ergebnisse zeigen, daß das erste Modell eine gute Vorhersage der orthodontischen Zahnbewegung erlaubt, während die Annahme, daß die mechanischen Deformationen der Alveolarwand den Knochenumbau mitbestimmen, die klinische Realität nicht zutreffend beschreibt.

[1]  Y. Tamatsu A measurement of local elastic modulus of labial and buccal compact bone of human mandible. , 1994 .

[2]  J. W. Schweiker,et al.  Investigation of root-periodontium interface stresses and displacements for orthodontic application , 1972 .

[3]  K R Williams,et al.  Orthodontic tooth movement analysed by the Finite Element Method. , 1984, Biomaterials.

[4]  Ch. Bourauel,et al.  Orthodontisches Meß- und Simulationssystem (OMSS) für die statische und dynamische Analyse der Zahnbewegung , 1991, Fortschritte der Kieferorthopädie.

[5]  阿部 博之,et al.  Data book on mechanical properties of living cells, tissues, and organs , 1996 .

[6]  A G Hannam,et al.  Deformation of the Human Mandible During Simulated Tooth Clenching , 1994, Journal of dental research.

[7]  K G Heiple,et al.  The material properties of immature bone. , 1982, Journal of biomechanical engineering.

[8]  O Miyakawa,et al.  A new method for finite element simulation of orthodontic appliance-teeth-periodontium-alveolus system. , 1985, Journal of biomechanics.

[9]  R. Pidaparti,et al.  A uniform strain criterion for trabecular bone adaptation: do continuum-level strain gradients drive adaptation? , 1997, Journal of biomechanics.

[10]  R. B. Ashman,et al.  Young's modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements. , 1993, Journal of biomechanics.

[11]  C. Burstone,et al.  Force systems from an ideal arch. , 1974, American journal of orthodontics.

[12]  I C Howard,et al.  The Effects of Enamel Anisotropy on the Distribution of Stress in a Tooth , 1993, Journal of dental research.

[13]  S. Cowin,et al.  Bone remodeling I: theory of adaptive elasticity , 1976 .

[14]  R J Nikolai,et al.  Centers of rotation for combined vertical and transverse tooth movements. , 1976, American journal of orthodontics.

[15]  H. Grootenboer,et al.  Adaptive bone-remodeling theory applied to prosthetic-design analysis. , 1987, Journal of biomechanics.

[16]  C J Burstone,et al.  Patterns of initial tooth displacements associated with various root lengths and alveolar bone heights. , 1991, American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics.

[17]  J Middleton,et al.  A stress analysis of the periodontal ligament under various orthodontic loadings. , 1991, European journal of orthodontics.

[18]  H Weinans,et al.  Trends of mechanical consequences and modeling of a fibrous membrane around femoral hip prostheses. , 1990, Journal of biomechanics.

[19]  C J Burstone,et al.  Optimizing anterior and canine retraction. , 1976, American journal of orthodontics.

[20]  C Bourauel,et al.  An experimental apparatus for the simulation of three-dimensional movements in orthodontics. , 1992, Journal of biomedical engineering.

[21]  E. K. Basdra Biologische Auswirkungen der kieferorthopädischen Zahnbewegung , 1997, Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie.

[22]  L. P. Nolte,et al.  Computergestützte Entwicklung kieferorthopädischer Behandlungselemente aus NiTi-Memory-Legierungen am Beispiel einer pseudoelastischen Retraktionsfeder , 2005, Fortschritte der Kieferorthopädie.

[23]  David R. Hall,et al.  Elastic Constants of Three Representative Dental Cements , 1973 .

[24]  C. Rubin,et al.  Clinical Science , 1983 .

[25]  J. Argüelles,et al.  Initial stress induced in periodontal tissue with diverse degrees of bone loss by an orthodontic force: tridimensional analysis by means of the finite element method. , 1993, American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics.

[26]  J. Galante,et al.  ESB Research Award 1992. The mechanism of bone remodeling and resorption around press-fitted THA stems. , 1993, Journal of biomechanics.

[27]  J L Lewis,et al.  Elastic moduli, yield stress, and ultimate stress of cancellous bone in the canine proximal femur. , 1987, Journal of biomechanics.

[28]  C J Burstone,et al.  Determination of Arbitrary Tooth Displacements , 1978, Journal of dental research.

[29]  J Parkinson,et al.  The mechanical properties of simulated collagen fibrils. , 1997, Journal of biomechanics.

[30]  C. Rubin,et al.  Stress analysis of the human tooth using a three-dimensional finite element model. , 1983, Journal of dental research.

[31]  C J Burstone,et al.  Analysis of generalized curved beams for orthodontic applications. , 1974, Journal of biomechanics.

[32]  K. Bathe Finite-Elemente-Methoden , 1986 .

[33]  G S Beaupré,et al.  An approach for time‐dependent bone modeling and remodeling—theoretical development , 1990, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[34]  J. C. Simo,et al.  Adaptive bone remodeling incorporating simultaneous density and anisotropy considerations. , 1997, Journal of biomechanics.

[35]  G. Beaupré,et al.  An approach for time‐dependent bone modeling and remodeling—application: A preliminary remodeling simulation , 1990, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[36]  T Mikami,et al.  Optical measurement of dental cast profile and application to analysis of three-dimensional tooth movement in orthodontics. , 1989, Frontiers of medical and biological engineering : the international journal of the Japan Society of Medical Electronics and Biological Engineering.

[37]  D. Carter Mechanical loading history and skeletal biology. , 1987, Journal of biomechanics.

[38]  R J Nikolai Rigid-body kinematics and single-tooth displacements. , 1996, American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics.

[39]  C J Burstone,et al.  Three-dimensional finite element analysis for stress in the periodontal tissue by orthodontic forces. , 1987, American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics.

[40]  D C HAACK,et al.  Geometry and mechanics as related to tooth movement studied by means of two-dimensional model. , 1963, Journal of the American Dental Association.

[41]  C. Bourauel,et al.  Numerische und experimentelle Analyse initialer Zahnbeweglichkeiten , 1997 .