Invariant measure of scalar first-order conservation laws with stochastic forcing

Under an hypothesis of non-degeneracy of the flux, we study the long-time behaviour of periodic scalar first-order conservation laws with stochastic forcing in any space dimension. For sub-cubic fluxes, we show the existence of an invariant measure. Moreover for sub-quadratic fluxes we show uniqueness and ergodicity of the invariant measure. Also, since this invariant measure is supported by $$L^p$$Lp for some $$p$$p small, we are led to generalize to the stochastic case the theory of $$L^1$$L1 solutions developed by Chen and Perthame (Ann Inst H Poincaré Anal Non Linéaire 20(4):645–668, 2003).

[1]  L. DesvillettesUniversit Averaging Lemmas without Time Fourier Transform and Application to Discretized Kinetic Equations , 1999 .

[2]  Guy Vallet,et al.  ON A STOCHASTIC FIRST-ORDER HYPERBOLIC EQUATION IN A BOUNDED DOMAIN , 2009 .

[3]  Yuri Bakhtin The Burgers equation with Poisson random forcing , 2011, 1109.5668.

[4]  Martina Hofmanová,et al.  Strong solutions of semilinear stochastic partial differential equations , 2013 .

[5]  Scalar conservation laws with stochastic forcing, revised version , 2013 .

[6]  Gui-Qiang G. Chen,et al.  Large-time behavior of periodic entropy solutions to anisotropic degenerate parabolic-hyperbolic equations , 2008, 0810.2862.

[7]  K. Khanin,et al.  Burgers Turbulence and Random Lagrangian Systems , 2003 .

[8]  Panagiotis E. Souganidis,et al.  Scalar conservation laws with rough (stochastic) fluxes , 2013, Stochastic Partial Differential Equations: Analysis and Computations.

[9]  D. Nualart,et al.  Stochastic scalar conservation laws , 2008 .

[10]  Guy Vallet,et al.  THE CAUCHY PROBLEM FOR CONSERVATION LAWS WITH A MULTIPLICATIVE STOCHASTIC PERTURBATION , 2012 .

[11]  Panagiotis E. Souganidis,et al.  Stochastic averaging lemmas for kinetic equations , 2012, 1204.0317.

[12]  E Weinan,et al.  Invariant measures for Burgers equation with stochastic forcing , 2000, math/0005306.

[13]  F. Flandoli Random perturbation of PDEs and fluid dynamic models , 2011 .

[14]  Benoît Perthame,et al.  Kinetic formulation of conservation laws , 2002 .

[15]  Gui-Qiang G. Chen,et al.  On Nonlinear Stochastic Balance Laws , 2011, 1111.5217.

[16]  池田 信行,et al.  Stochastic differential equations and diffusion processes , 1981 .

[17]  F. Bouchut,et al.  Averaging lemmas without time Fourier transform and application to discretized kinetic equations , 1999, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[18]  J. C. Menéndez,et al.  Renormalized entropy solutions of scalar conservation laws. , 2002 .

[19]  Gui-Qiang G. Chen,et al.  Well-posedness for non-isotropic degenerate parabolic-hyperbolic equations , 2003 .

[20]  Jérôme Droniou,et al.  Intégration et Espaces de Sobolev à Valeurs Vectorielles. , 2001 .

[21]  J. U. Kim,et al.  On a stochastic scalar conservation law , 2003 .

[22]  A. Boritchev Sharp Estimates for Turbulence in White-Forced Generalised Burgers Equation , 2012, 1201.5567.

[23]  The Dirichlet problem for a conservation law with a multiplicative stochastic perturbation , 2014 .

[24]  B. Saussereau,et al.  On the long-time behaviour of a class of parabolic SPDE's: monotonicity methods and exchange of stability , 2005 .

[25]  Panagiotis E. Souganidis,et al.  Large-Time Behavior for Viscous and Nonviscous Hamilton-Jacobi Equations Forced by Additive Noise , 2005, SIAM J. Math. Anal..

[26]  L. Rogers Stochastic differential equations and diffusion processes: Nobuyuki Ikeda and Shinzo Watanabe North-Holland, Amsterdam, 1981, xiv + 464 pages, Dfl.175.00 , 1982 .

[27]  Jonathan C. Mattingly Ergodicity of 2D Navier–Stokes Equations with¶Random Forcing and Large Viscosity , 1999 .

[28]  A. Debussche,et al.  Scalar conservation laws with stochastic forcing , 2010, 1001.5415.

[29]  B. Saussereau,et al.  Scalar conservation laws with fractional stochastic forcing: Existence, uniqueness and invariant measure , 2012 .

[30]  Long-time behavior in scalar conservation laws , 2008, 0812.3537.

[31]  B. Perthame,et al.  A kinetic formulation of multidimensional scalar conservation laws and related equations , 1994 .