Symmetry dependence of holograms for optical trapping.

No iterative algorithm is necessary to calculate holograms for most holographic optical trapping patterns. Instead, holograms may be produced by a simple extension of the prisms-and-lenses method. This formulaic approach yields the same diffraction efficiency as iterative algorithms for any asymmetric or symmetric but nonperiodic pattern of points while requiring less calculation time. A slight spatial disordering of periodic patterns significantly reduces intensity variations between the different traps without extra calculation costs. Eliminating laborious hologram calculations should greatly facilitate interactive holographic trapping.

[1]  B Robertson,et al.  Dynamic holography for optical interconnections. II. Routing holograms with predictable location and intensity of each diffraction order. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[2]  Hans J. Tiziani,et al.  Computer-generated holograms from 3D-objects written on twisted-nematic liquid crystal displays , 1997 .

[3]  Johannes Courtial,et al.  Assembly of 3-dimensional structures using programmable holographic optical tweezers. , 2004, Optics express.

[4]  H J Tiziani,et al.  Optical particle trapping with computer-generated holograms written on a liquid-crystal display. , 1999, Optics letters.

[5]  Miles J. Padgett,et al.  Defining the trapping limits of holographical optical tweezers , 2004 .

[6]  David G Grier,et al.  Observation of flux reversal in a symmetric optical thermal ratchet. , 2005, Physical review letters.

[7]  G. Spalding,et al.  Computer-generated holographic optical tweezer arrays , 2000, cond-mat/0008414.

[8]  D. Grier,et al.  Optical tweezer arrays and optical substrates created with diffractive optics , 1998 .

[9]  P. T. Korda,et al.  Kinetically locked-in colloidal transport in an array of optical tweezers. , 2002, Physical review letters.

[10]  Clemens Bechinger,et al.  Phase transitions of colloidal monolayers in periodic pinning arrays. , 2003, Physical review letters.

[11]  D. Grier,et al.  Sorting mesoscopic objects with periodic potential landscapes: optical fractionation. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  Johannes Courtial,et al.  Interactive application in holographic optical tweezers of a multi-plane Gerchberg-Saxton algorithm for three-dimensional light shaping. , 2004, Optics express.

[13]  L. B. Lesem,et al.  The kinoform: a new wavefront reconstruction device , 1969 .

[14]  Jennifer E. Curtis,et al.  Getting a grip: hyaluronan-mediated cellular adhesion , 2004, SPIE Optics + Photonics.

[15]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[16]  K. Dholakia,et al.  Microfluidic sorting in an optical lattice , 2003, Nature.

[17]  Christian Schmitz,et al.  Constructing and probing biomimetic models of the actin cortex with holographic optical tweezers , 2004, SPIE Optics + Photonics.

[18]  H. Tiziani,et al.  Multi-functional optical tweezers using computer-generated holograms , 2000 .

[19]  Wolfgang Losert,et al.  Shape deformations of giant unilamellar vesicles with a laser tweezer array , 2004, SPIE Optics + Photonics.

[20]  David G Grier,et al.  Transport and fractionation in periodic potential-energy landscapes. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  Jennifer E. Curtis,et al.  Dynamic holographic optical tweezers , 2002 .

[22]  Johannes Courtial,et al.  3D manipulation of particles into crystal structures using holographic optical tweezers. , 2004, Optics express.